161 **S** # THERMAL ARC® ## **INVERTER ARC WELDER** # **Operating Manual** **Revision: AD** Issue Date: January 14, 2011 **Operating Features:** Manual No.: 0-5073 ## WE APPRECIATE YOUR BUSINESS! Congratulations on your new Thermal Arc product. We are proud to have you as our customer and will strive to provide you with the best service and reliability in the industry. This product is backed by our extensive warranty and world-wide service network. To locate your nearest distributor or service agency call 1-800-462-2782, or visit us on the web at www.Thermalarc.com. This Operating Manual has been designed to instruct you on the correct use and operation of your Thermal Arc product. Your satisfaction with this product and its safe operation is our ultimate concern. Therefore please take the time to read the entire manual, especially the Safety Precautions. They will help you to avoid potential hazards that may exist when working with this product. ## YOU ARE IN GOOD COMPANY! The Brand of Choice for Contractors and Fabricators Worldwide. Thermal Arc is a Global Brand of Arc Welding Products for Thermadyne Industries Inc. We manufacture and supply to major welding industry sectors worldwide including; Manufacturing, Construction, Mining, Automotive, Aerospace, Engineering, Rural and DIY/Hobbyist. We distinguish ourselves from our competition through marketleading, dependable products that have stood the test of time. We pride ourselves on technical innovation, competitive prices, excellent delivery, superior customer service and technical support, together with excellence in sales and marketing expertise. Above all, we are committed to develop technologically advanced products to achieve a safer working environment within the welding industry. Read and understand this entire Manual and your employer's safety practices before installing, operating, or servicing the equipment. While the information contained in this Manual represents the Manufacturer's best judgment, the Manufacturer assumes no liability for its use. | Operating Manual Number 0-5073 for:
Thermal Arc 161 S Power Source Arc Welder
Thermal Arc 161 S System with Stick Kit & Case
Thermal Arc 161 S System with Stick/TIG Kit & Case | Part No. W1003600
Part No. W1003602
Part No. W1003603 | |--|---| | Published by:
Thermadyne Industries Inc.
82 Benning Street
West Lebanon, New Hampshire, USA 03784
(603) 298-5711 | | | www.thermalarc.com | | | Copyright © 2010 by
Thermadyne Industries Inc. | | | ® All rights reserved. | | | Reproduction of this work, in whole or in part, without w | ritten permission of the publisher is prohibited. | | The publisher does not assume and hereby disclaims are caused by any error or omission in this Manual, whether any other cause. | | | Publication Date: September 16, 2010
Revision Date: January 14, 2011 | | | Record the following information for Warranty purposes | S: | | Where Purchased: | | | Purchase Date: | | | | | Equipment Serial #: ## **TABLE OF CONTENTS** | SECTIO |)N 1:SAFI | ETY INSTRUCTIONS AND WARNINGS | 1-1 | |--------|-----------|--|------| | | 1.01 | Arc Welding Hazards | 1-1 | | | 1.02 | General Safety Information for Victor CS Regulator | 1-4 | | | 1.03 | Principal Safety Standards | 1-5 | | | 1.04 | Symbol Chart | 1-6 | | | 1.05 | Precautions De Securite En Soudage A L'arc | 1-7 | | | 1.06 | Dangers relatifs au soudage à l'arc | 1-7 | | | 1.07 | Informations Générales de Sécurité | 1-10 | | | 1.08 | Principales Normes De Securite | 1-12 | | | 1.09 | Graphique de Symbole | 1-13 | | SECTIO |)N 2:INTF | RODUCTION | 2-1 | | | 2.01 | How to Use This Manual | 2-1 | | | 2.02 | Equipment Identification | | | | 2.03 | Receipt of Equipment | | | | 2.04 | Description | | | | 2.05 | Transportation Methods | | | | 2.06 | Duty Cycle | 2-1 | | | 2.07 | Specifications | 2-2 | | SECTIO | ON 3:INST | TALLATION | 3-1 | | | 3.01 | Environment | 3-1 | | | 3.02 | Location | 3-1 | | | 3.03 | Electrical Input Connections | 3-1 | | | 3.04 | Electromagnetic Compatibility | 3-4 | | | 3.05 | Setup for Welding | 3-5 | | | 3.06 | STICK (SMAW) Setup | 3-6 | | | 3.07 | LIFT TIG (GTAW) Setup | 3-7 | | | 3.08 | Victor Regulator | 3-8 | | | 3.09 | Leak Testing the System | 3-10 | | | 3.10 | When You Finish Using the Regulator | 3-10 | | | 3.11 | Storage of the Regulator | 3-10 | ## **TABLE OF CONTENTS** | SECTION 4:OPER | RATION | 4-1 | |-----------------|--|-------------| | 4.01 | Front Panel | 4-1 | | 4.02 | Welding Current Control Explanation | 4-2 | | 4.03 | STICK (SMAW) Electrode Polarity | 4-3 | | 4.04 | Effects of Stick Welding Various Materials | | | 4.05 | GTAW Electrode Polarity | 4-4 | | 4.06 | Guide for Selecting Filler Wire | 4-4 | | 4.07 | Tungsten Electrode Current Ranges | 4-4 | | 4.08 | Shielding Gas Selection | 4-4 | | 4.09 | Tungsten Electrode Types | 4-4 | | 4.10 | TIG Welding Parameters for Steel | 4-5 | | 4.11 | Arc Welding Practice | 4-5 | | 4.12 | Welding Position | 4-6 | | 4.13 | Joint Preparations | 4-7 | | 4.14 | Arc Welding Technique | 4-8 | | 4.15 | The Welder | 4-8 | | 4.16 | Striking the Arc | | | 4.17 | Arc Length | | | 4.18 | Rate of Travel | | | 4.19 | Making Welded Joints | | | 4.20 | Distortion | | | 4.21 | The Cause of Distortion | | | 4.22 | Overcoming Distortion Effects | 4-12 | | SECTION 5:SERV | /ICE | 5-1 | | 5.01 | Maintenance and Inspection | 5-1 | | 5.02 | STICK (SMAW) Welding Problems | 5-2 | | 5.03 | TIG Welding Problems | 5-3 | | 5.04 | Power Source Problems | 5-4 | | APPENDIX 1: OP | TIONS AND ACCESSORIES | A -1 | | APPENDIX 2: REI | PLACEMENT PARTS | A-2 | | APPENDIX 3: SYS | STEM SCHEMATIC | A- 4 | | LIMITED WARRA | INTY | | | WARRANTY SCH | EDULE | | ## Thermal Arc 161S Stick System ## Part Number W1003602 - Thermal Arc 161S power supply in toolbox - Tweco electrode holder, 13ft (4m) lead - Tweco ground clamp, 10ft (3.1m) lead - 4 GP 1/8" (3.2mm) dia stick electrodes - 230V to 115V adapter - · Quick set-up DVD - Operating manual ## Thermal Arc 161S TIG/Stick System ## Part Number W1003603 - Thermal Arc 161 S power supply in toolbox - 17V TIG torch, 12.5ft (3.8m) with accessory kit - Tweco electrode holder, 13ft (4m) lead - Tweco ground clamp, 10ft (3.1m) lead - 4 GP 1/8" (3.2mm) dia. stick electrodes - Victor CutSkill 2G Gas Regulator - 230V to 115V adapter - Quick set-up DVD - · Operating manual ## SECTION 1: SAFETY INSTRUCTIONS AND WARNINGS #### WARNING PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS KEEP AWAY UNTIL CONSULTING YOUR DOCTOR. DO NOT LOSE THESE INSTRUCTIONS. READ OPERATING/INSTRUCTION MANUAL BEFORE INSTALLING, OPERATING OR SERVICING THIS EQUIPMENT. Welding products and welding processes can cause serious injury or death, or damage to other equipment or property, if the operator does not strictly observe all safety rules and take precautionary actions. Safe practices have developed from past experience in the use of welding and cutting. These practices must be learned through study and training before using this equipment. Some of these practices apply to equipment connected to power lines; other practices apply to engine driven equipment. Anyone not having extensive training in welding and cutting practices should not attempt to weld. Safe practices are outlined in the American National Standard Z49.1 entitled: <u>SAFETY IN WELDING AND CUTTING</u>. This publication and other guides to what you should learn before operating this equipment are listed at the end of these safety precautions. **HAVE ALL INSTALLATION**, **OPERATION**, **MAINTENANCE**, **AND REPAIR WORK PERFORMED ONLY BY QUALIFIED PEOPLE**. ## 1.01 Arc Welding Hazards #### WARNING ## ELECTRIC SHOCK can kill. Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also live when power is on. In semi-automatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard. - 1. Do not touch live electrical parts. - 2. Wear dry, hole-free insulating gloves and body protection. - Insulate yourself from work and ground using dry insulating mats or covers. - Disconnect input power or stop engine before installing or servicing this equipment. Lock input power disconnect switch open, or remove line fuses so power cannot be turned on accidentally. - Properly install and ground this equipment according to its Owner's Manual and national, state, and local codes. - Turn off all equipment when not in use. Disconnect power to equipment if it will be left unattended or out of service. - 7. Use fully insulated electrode holders. Never dip holder in water to cool it or lay it down on the ground or the work surface. Do not touch holders connected to two welding machines at the same time or touch other people with the holder or electrode. - Do not use worn, damaged, undersized, or poorly spliced cables. - 9. Do not wrap cables around your body. - 10. Ground the workpiece to a good electrical (earth) ground. - 11. Do not touch electrode while in contact with the work (ground) circuit. - 12. Use only well-maintained equipment. Repair or replace damaged parts at once. - 13. In confined spaces or damp locations, do not use a welder with AC output unless it is equipped with a voltage reducer. Use equipment with DC output. - Wear a safety harness to prevent falling if working above floor level. - 15. Keep all panels and
covers securely in place. #### WARNING ARC RAYS can burn eyes and skin; NOISE can damage hearing. Arc rays from the welding process produce intense heat and strong ultraviolet rays that can burn eyes and skin. Noise from some processes can damage hearing. - Wear a welding helmet fitted with a proper shade of filter (see ANSI Z49.1 listed in Safety Standards) to protect your face and eyes when welding or watching. - 2. Wear approved safety glasses. Side shields recommended. - 3. Use protective screens or barriers to protect others from flash and glare; warn others not to watch the arc. - 4. Wear protective clothing made from durable, flame-resistant material (wool and leather) and foot protection. - 5. Use approved ear plugs or ear muffs if noise level is high. #### WARNING FUMES AND GASES can be hazardous to your health. Welding produces fumes and gases. Breathing these fumes and gases can be hazardous to your health. - 1. Keep your head out of the fumes. Do not breathe the fumes. - If inside, ventilate the area and/or use exhaust at the arc to remove welding fumes and gases. - 3. If ventilation is poor, use an approved air-supplied respirator. - Read the Material Safety Data Sheets (MSDSs) and the manufacturer's instruction for metals, consumables, coatings, and cleaners. - Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Shielding gases used for welding can displace air causing injury or death. Be sure the breathing air is safe. - 6. Do not weld in locations near degreasing, cleaning, or spraying operations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases. - 7. Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and if necessary, while wearing an air-supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded. ## WARNING WELDING can cause fire or explosion. Sparks and spatter fly off from the welding arc. The flying sparks and hot metal, weld spatter, hot workpiece, and hot equipment can cause fires and burns. Accidental contact of electrode or welding wire to metal objects can cause sparks, overheating, or fire. - 1. Protect yourself and others from flying sparks and hot metal. - 2. Do not weld where flying sparks can strike flammable material. - 3. Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers. - Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas. - Watch for fire, and keep a fire extinguisher nearby. - Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side. - 7. Do not weld on closed containers such as tanks or drums. - Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock and fire hazards. - 9. Do not use welder to thaw frozen pipes. - Remove stick electrode from holder or cut off welding wire at contact tip when not in use. | Eye protection filter shade selector for welding or cutting (goggles or helmet), from AWS A6.2-73. | | | | | | |--|---|------------------------|---------------------------------|---|------------------------| | Welding or Cutting
Operation | Electrode Size
Metal Thickness
or Welding Current | Filter
Shade
No. | Welding or Cutting
Operation | Electrode Size
Metal Thickness
or Welding | Filter
Shade
No. | | Torch soldering | | 2 | Gas metal-arc
welding (MIG) | | | | Torch brazing | | 3 or 4 | Non-ferrous base metal | All | 11 | | Oxygen Cutting | | | Non-ferrous base metal | All | 12 | | Light | Under 1 in., 25 mm | 3 or 4 | Gas tungsten arc welding | All | 12 | | Medium | 1 to 6 in., 25-150 mm | 4 or 5 | (TIG) | All | 12 | | Heavy | Over 6 in., 150 mm | 5 or 6 | Atomic hydrogen welding | All | 12 | | Gas welding | | | Carbon arc welding | All | 12 | | Light | Under 1/8 in., 3 mm | 4 or 5 | Plasma arc welding | | | | Medium | 1/8 to 1/2 in., 3-12 mm | 5 or 6 | Carbon arc air gouging | | | | Heavy | Over 1/2 in., 12 mm | 6 or 8 | Light | | 12 | | Shielded metal-arc
welding
(stick) electrodes | Under 5/32 in., 4 mm | 10 | Heavy | | 14 | | | 5/32 to 1/4 in.,
4 to 6.4 mm | 12 | Plasma arc cutting | | | | | Over 1/4 in., 6.4 mm | 14 | Light | Under 300 Amp | 9 | | | | | Medium | 300 to 400 Amp | 12 | | | | | Heavy | Over 400 Amp | 14 | ### WARNING FLYING SPARKS AND HOT METAL can cause injury. Chipping and grinding cause flying metal. As welds cool, they can throw off slag. - Wear approved face shield or safety goggles. Side shields recommended. - 2. Wear proper body protection to protect skin. #### WARNING CYLINDERS can explode if damaged. Shielding gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully. - Protect compressed gas cylinders from excessive heat, mechanical shocks, and arcs. - Install and secure cylinders in an upright position by chaining them to a stationary support or equipment cylinder rack to prevent falling or tipping. - Keep cylinders away from any welding or other electrical circuits. - 4. Never allow a welding electrode to touch any cylinder. - Use only correct shielding gas cylinders, regulators, hoses, and fittings designed for the specific application; maintain them and associated parts in good condition. - 6. Turn face away from valve outlet when opening cylinder valve. - Keep protective cap in place over valve except when cylinder is in use or connected for use. - 8. Read and follow instructions on compressed gas cylinders, associated equipment, and CGA publication P-1 listed in Safety Standards. ### WARNING Engines can be dangerous. ### WARNING ENGINE EXHAUST GASES can kill. Engines produce harmful exhaust gases. 1. Use equipment outside in open, well-ventilated areas. If used in a closed area, vent engine exhaust outside and away from any building air intakes. ENGINE FUEL can cause fire or explosion. Engine fuel is highly flammable. - 1. Stop engine before checking or adding fuel. - Do not add fuel while smoking or if unit is near any sparks or open flames. - 3. Allow engine to cool before fueling. If possible, check and add fuel to cold engine before beginning job. - 4. Do not overfill tank allow room for fuel to expand. - Do not spill fuel. If fuel is spilled, clean up before starting engine. #### MOVING PARTS can cause injury Moving parts, such as fans, rotors, and belts can cut fingers and hands and catch loose clothing. - Keep all doors, panels, covers, and guards closed and securely in place. - 2. Stop engine before installing or connecting unit. - 3. Have only qualified people remove guards or covers for maintenance and troubleshooting as necessary. - 4. To prevent accidental starting during servicing, disconnect negative (-) battery cable from battery. - Keep hands, hair, loose clothing, and tools away from moving parts. - 6. Reinstall panels or guards and close doors when servicing is finished and before starting engine. SPARKS can cause BATTERY GASES TO EXPLODE; BATTERY ACID can burn eyes and skin. Batteries contain acid and generate explosive gases. - 1. Always wear a face shield when working on a battery. - 2. Stop engine before disconnecting or connecting battery cables. - Do not allow tools to cause sparks when working on a battery. - Do not use welder to charge batteries or jump start vehicles. - 5. Observe correct polarity (+ and -) on batteries. ### WARNING STEAM AND PRESSURIZED HOT COOLANT can burn face, eyes, and skin. The coolant in the radiator can be very hot and under pressure. - Do not remove radiator cap when engine is hot. Allow engine to cool. - 2. Wear gloves and put a rag over cap area when removing cap. - 3. Allow pressure to escape before completely removing cap. #### LEAD WARNING This product contains chemicals, including lead, or otherwise produces chemicals known to the State of California to cause cancer, birth defects and other reproductive harm. Wash hands after handling. (California Health & Safety Code § 25249.5 et seq.) #### NOTE Considerations About Welding And The Effects of Low Frequency Electric and Magnetic Fields The following is a quotation from the General Conclusions Section of the U.S. Congress, Office of Technology Assessment, Biological Effects of Power Frequency Electric & Magnetic Fields - Background Paper, OTA-BP-E-63 (Washington, DC: U.S. Government Printing Office, May 1989): "...there is now a very large volume of scientific findings based on experiments at the cellular level and from studies with animals and people which clearly establish that low frequency magnetic fields interact with, and produce changes in, biological systems. While most of this work is of very high quality, the results are complex. Current scientific understanding does not yet allow us to interpret the evidence in a single coherent framework. Even more frustrating, it does not yet allow us to draw definite conclusions about questions of possible risk or to offer clear science-based advice on strategies to minimize or avoid potential risks." To reduce magnetic fields in the workplace, use the following procedures. - 1. Keep cables close together by twisting or taping them. - 2. Arrange cables to one side and away from the operator. - 3. Do not coil or drape cable around the body. - Keep welding power source and cables as far away from body as practical. ### ABOUT PACEMAKERS: The above procedures are among those
also normally recommended for pacemaker wearers. Consult your doctor for complete information. ## 1.02 General Safety Information for Victor CS Regulator ## A Fire Prevention Welding and cutting operations use fire or combustion as a basic tool. The process is very useful when properly controlled. However, it can be extremely destructive if not performed correctly in the proper environment. - 1. The work area must have a fireproof floor. - 2. Work benches or tables used during welding or cutting operations must have fireproof tops. - Use heat resistant shields or other approved material to protect nearby walls or unprotected flooring from sparks and hot metal - Keep an approved fire extinguisher of the proper size and type in the work area. Inspect it regularly to ensure that it is in proper working order. Know how to use the fire extinguisher. - 5. Move combustible materials away from the work site. If you can not move them, protect them with fireproof covers. ## WARNING NEVER perform welding, heating, or cutting operations on a container that has held toxic, combustible or flammable liquids, or vapors. NEVER perform welding, heating, or cutting operations in an area containing combustible vapors, flammable liquids, or explosive dust. ## **B** Housekeeping ## WARNING NEVER allow oxygen to contact grease, oil, or other flammable substances. Although oxygen by itself will not burn, these substances become highly explosive. They can ignite and burn violently in the presence of oxygen. Keep ALL apparatus clean and free of grease, oil and other flammable substances. #### **C** Ventilation ### WARNING Adequately ventilate welding, heating, and cutting work areas to prevent accumulation of explosive or toxic concentrations of gases. Certain combinations of metals, coatings, and gases generate toxic fumes. Use respiratory protection equipment in these circumstances. When welding/brazing, read and understand the Material Safety Data Sheet for the welding/brazing alloy. #### **D** Personal Protection Gas flames produce infrared radiation which may have a harmful effect on the skin and especially on the eyes. Select goggles or a mask with tempered lenses, shaded 4 or darker, to protect your eyes from injury and provide good visibility of the work. Always wear protective gloves and flame-resistant clothing to protect skin and clothing from sparks and slag. Keep collars, sleeves, and pockets buttoned. **DO NOT** roll up sleeves or cuff pants. When working in a non-welding or cutting environment, always wear suitable eye protection or face shield. ## WARNING Practice the following safety and operation precautions EVERY TIME you use pressure regulation equipment. Deviation from the following safety and operation instructions can result in fire, explosion, damage to equipment, or injury to the operator. ## E Compressed Gas Cylinders The Department of Transportation (DOT) approves the design and manufacture of cylinders that contain gases used for welding or cutting operations. Place the cylinder (Figure 1-1) where you will use it. Keep the cylinder in a vertical position. Secure it to a cart, wall, work bench, post, etc. Figure 1-1: Gas Cylinders #### WARNING Cylinders are highly pressurized. Handle with care. Serious accidents can result from improper handling or misuse of compressed gas cylinders DO NOT drop the cylinder, knock it over, or expose it to excessive heat, flames or sparks. DO NOT strike it against other cylinders. Contact your gas supplier or refer to CGA P-1 "Safe Handling of Compressed Gases in Containers" publication. ## NOTE CGA P-1 publication is available by writing the Compressed Gas Association, 4221 Walney Road, 5th Floor, Chantilly, VA 20151-2923 Place the valve protection cap on the cylinder whenever moving it, placing it in storage, or not using it. Never drag or roll cylinders in any way. Use a suitable hand truck to move cylinders. - 3. Store empty cylinders away from full cylinders. Mark them "EMPTY" and close the cylinder valve. - NEVER use compressed gas cylinders without a pressure reducing regulator attached to the cylinder valve. - Inspect the cylinder valve for oil, grease, and damaged parts. ## WARNING DO NOT use the cylinder if you find oil, grease or damaged parts. Inform your gas supplier of this condition immediately. Momentarily open and close (called "cracking") the cylinder valve to dislodge any dust or dirt that may be present in the valve. ## CAUTION Open the cylinder valve slightly. If you open the valve too much, the cylinder could tip over. When cracking the cylinder valve, DO NOT stand directly in front of the cylinder valve. Always perform cracking in a well ventilated area. If an acetylene cylinder sprays a mist when cracked, let it stand for 15 minutes. Then, try to crack the cylinder valve again. If this problem persists, contact your gas supplier. ## 1.03 Principal Safety Standards <u>Safety in Welding and Cutting</u>, ANSI Standard Z49.1, from American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126. <u>Safety and Health Standards</u>, OSHA 29 CFR 1910, from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Recommended Safe Practices for the Preparation for Welding and Cutting of Containers That Have Held Hazardous Substances, American Welding Society Standard AWS F4.1, from American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126. <u>National Electrical Code</u>, NFPA Standard 70, from National Fire Protection Association, Batterymarch Park, Quincy, MA 02269. <u>Safe Handling of Compressed Gases in Cylinders</u>, CGA Pamphlet P-1, from Compressed Gas Association, 1235 Jefferson Davis Highway, Suite 501, Arlington, VA 22202. <u>Code for Safety in Welding and Cutting</u>, CSA Standard W117.2, from Canadian Standards Association, Standards Sales, 178 Rexdale Boulevard, Rexdale, Ontario, Canada M9W 1R3. <u>Safe Practices for Occupation and Educational Eye and Face Protection</u>, ANSI Standard Z87.1, from American National Standards Institute, 1430 Broadway, New York, NY 10018. <u>Cutting and Welding Processes</u>, NFPA Standard 51B, from National Fire Protection Association, Batterymarch Park, Quincy, MA 02269. ## 1.04 Symbol Chart Note that only some of these symbols will appear on your model. | • | | |-------------------------|---| | $1 \sim$ | Single Phase | | 3~ | Three Phase | | <u>3~</u> M D ■= | Three Phase Static
Frequency Converter-
Transformer-Rectifier | | | Remote | | X | Duty Cycle | | % | Percentage | | 0 | Panel/Local | | <u></u> | Shielded Metal
Arc Welding (SMAW) | | <u></u> | Gas Metal Arc
Welding (GMAW) | | <u></u> | Gas Tungsten Arc
Welding (GTAW) | | | Air Carbon Arc
Cutting (CAC-A) | | Р | Constant Current | | L | Constant Voltage
Or Constant Potential | | CTT C | High Temperature | | 4 | Fault Indication | | P | Arc Force | | <u></u> ↓ Ø= | Touch Start (GTAW) | | | Variable Inductance | | | Voltage Input | | 00 | Wire Feed Function | | |--|--|--| | ofo | Wire Feed Towards
Workpiece With
Output Voltage Off. | | | \$F | Welding Gun | | | F | Purging Of Gas | | | -F | Continuous Weld
Mode | | | | Spot Weld Mode | | | f | Spot Time | | | t1\$F | Preflow Time | | | ¥12 | Postflow Time | | | 2 Step Trigger Operation Press to initiate wirefeed and welding, release to stop. | | | | Press and hold for preflow, release to start arc. Press to stop arc, and hold for preflow. | | | | . <u>⊹.</u> t | Burnback Time | | | IPM | Inches Per Minute | | | МРМ | Meters Per Minute | | | | Art # A-04130 | | ## 1.05 Precautions De Securite En Soudage A L'arc #### LE SOUDAGE A L'ARC EST DANGEREUX PROTEGEZ-VOUS, AINSI QUE LES AUTRES, CONTRE LES BLESSURES GRAVES POSSIBLES OU LA MORT. NE LAISSEZ PAS LES ENFANTS S'APPROCHER, NI LES PORTEURS DE STIMULATEUR CARDIAQUE (A MOINS QU'ILS N'AIENT CONSULTE UN MEDECIN). CONSERVEZ CES INSTRUCTIONS. LISEZ LE MANUEL D'OPERATION OU LES INSTRUCTIONS AVANT D'INSTALLER, UTILISER OU ENTRETENIR CET EQUIPEMENT. Les produits et procédés de soudage peuvent sauser des blessures graves ou la mort, de même que des dommages au reste du matériel et à la propriété, si l'utilisateur n'adhère pas strictement à toutes les règles de sécurité et ne prend pas les précautions nécessaires. En soudage et coupage, des pratiques sécuritaires se sont développées suite à l'expérience passée. Ces pratiques doivent être apprises par étude ou entraînement avant d'utiliser l'equipement. Toute personne n'ayant pas suivi un entraînement intensif en soudage et coupage ne devrait pas tenter de souder. Certaines pratiques concernent les équipements raccordés aux lignes d'alimentation alors que d'autres s'adressent aux groupes électrogènes. La norme Z49.1 de l'American National Standard, intitulée "SAFETY IN WELDING AND CUTTING" présente les pratiques sécuritaires à suivre. Ce document ainsi que d'autres guides que vous devriez connaître avant d'utiliser cet équipement sont présentés à la fin de ces instructions de sécurité. SEULES DES PERSONNES QUALIFIEES DOIVENT FAIRE DES TRAVAUX D'INSTALLATION, DE REPARATION, D'ENTRETIEN ET D'ESSAI. ## 1.06 Dangers relatifs au soudage à l'arc ## L'ELECTROCUTION PEUT ETRE MORTELLE. Une décharge électrique peut tuer ou brûler gravement. L'électrode et le circuit de soudage sont sous tension dès la mise en circuit. Le circuit d'alimentation et les circuits internes de l'équipement sont aussi sous tension dès la mise en marche. En soudage automatique ou semiautomatique avec fil, ce dernier, le rouleau ou la bobine de fil, le logement des galets d'entrainement et toutes les pièces métalliques en contact avec le fil de soudage sont sous tension. Un équipement inadéquatement installé ou inadéquatement mis à la terre est dangereux. - 1. Ne touchez pas
à des pièces sous tension. - Portez des gants et des vêtements isolants, secs et non troués. - 3 Isolez-vous de la pièce à souder et de la mise à la terre au moyen de tapis isolants ou autres. - 4. Déconnectez la prise d'alimentation de l'équipement ou arrêtez le moteur avant de l'installer ou d'en faire l'entretien. Bloquez le commutateur en circuit ouvert ou enlevez les fusibles de l'alimentation afin d'éviter une mise en marche accidentelle. - 5. Veuillez à installer cet équipement et à le mettre à la terre selon le manuel d'utilisation et les codes nationaux, provinciaux et locaux applicables. - Arrêtez tout équipement après usage. Coupez l'alimentation de l'équipement s'il est hors d'usage ou inutilisé. - 7. N'utilisez que des porte-électrodes bien isolés. Ne jamais plonger les porte-électrodes dans l'eau pour les refroidir. Ne jamais les laisser traîner par terre ou sur les pièces à souder. Ne touchez pas aux porte-électrodes raccordés à deux sources de courant en même temps. Ne jamais toucher quelqu'un d'autre avec l'électrode ou le porte-électrode. - 8. N'utilisez pas de câbles électriques usés, endommagés, mal épissés ou de section trop petite. - 9. N'enroulez pas de câbles électriques autour de votre corps. - N'utilisez qu'une bonne prise de masse pour la mise à la terre de la pièce à souder. - Ne touchez pas à l'électrode lorsqu'en contact avec le circuit de soudage (terre). - 12. N'utilisez que des équipements en bon état. Réparez ou remplacez aussitôt les pièces endommagées. - 13. Dans des espaces confinés ou mouillés, n'utilisez pas de source de courant alternatif, à moins qu'il soit muni d'un réducteur de tension. Utilisez plutôt une source de courant continu. - 14. Portez un harnais de sécurité si vous travaillez en hauteur. - 15. Fermez solidement tous les panneaux et les capots. LE RAYONNEMENT DE L'ARC PEUT BRÛLER LES YEUX ET LA PEAU; LE BRUIT PEUT ENDOMMAGER L'OUIE. L'arc de soudage produit une chaleur et des rayons ultraviolets intenses, susceptibles de brûler les yeux et la peau. Le bruit causé par certains procédés peut endommager l'ouïe. ## **SAFETY INSTRUCTIONS** - Portez une casque de soudeur avec filtre oculaire de nuance appropriée (consultez la norme ANSI Z49 indiquée ci-après) pour vous protéger le visage et les yeux lorsque vous soudez ou que vous observez l'exécution d'une soudure. - Portez des lunettes de sécurité approuvées. Des écrans latéraux sont recommandés. - 3. Entourez l'aire de soudage de rideaux ou de cloisons pour protéger les autres des coups d'arc ou de l'éblouissement; avertissez les observateurs de ne pas regarder l'arc. - 4. Portez des vêtements en matériaux ignifuges et durables (laine et cuir) et des chaussures de sécurité. - Portez un casque antibruit ou des bouchons d'oreille approuvés lorsque le niveau de bruit est élevé. LES VAPEURS ET LES FUMEES SONT DANGEREUSES POUR LA SANTE. Le soudage dégage des vapeurs et des fumées dangereuses à respirer. - 1. Eloignez la tête des fumées pour éviter de les respirer. - 2. A l'intérieur, assurez-vous que l'aire de soudage est bien ventilée ou que les fumées et les vapeurs sont aspirées à l'arc. - 3. Si la ventilation est inadequate, portez un respirateur à adduction d'air approuvé. - Lisez les fiches signalétiques et les consignes du fabricant relatives aux métaux, aux produits consummables, aux revêtements et aux produits nettoyants. - 5. Ne travaillez dans un espace confiné que s'il est bien ventilé; sinon, portez un respirateur à adduction d'air. Les gaz protecteurs de soudage peuvent déplacer l'oxygène de l'air et ainsi causer des malaises ou la mort. Assurez-vous que l'air est propre à la respiration. - Ne soudez pas à proximité d'opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et les rayons de l'arc peuvent réagir avec des vapeurs et former des gaz hautement toxiques et irritants. - 7. Ne soudez des tôles galvanisées ou plaquées au plomb ou au cadmium que si les zones à souder ont été grattées à fond, que si l'espace est bien ventilé; si nécessaire portez un respirateur à adduction d'air. Car ces revêtements et tout métal qui contient ces éléments peuvent dégager des fumées toxiques au moment du soudage. | | SELECTION DES NUANCES DE FILTRES OCULAIRS POUR LA PROTECTION
DES YEUX EN COUPAGE ET SOUDAGE (selon AWS á 8.2-73) | | | | | |--|---|------------------------------|---|---|---------------------------------| | Opération de coupage
ou soudage | Dimension d'électrode ou
Epiasseur de métal ou
Intensité de courant | Nuance de
filtre oculaire | Opération de coupage
ou soudage | Dimension d'électrode ou
Epiasseur de métal ou
Intensité de courant | Nuance de
filtre
oculaire | | Brassage tendre
au chalumeau | toutes conditions | 2 | Soudage á l'arc sous gaz
avec fil plein (GMAW) | | | | Brassage fort
au chalumeau | toutes conditions | 3 ou 4 | métaux non-ferreux | toutes conditions | 11 | | Oxycoupage | | | métaux ferreux | toutes conditions | 12 | | mince | moins de 1 po. (25 mm) | 2 ou 3 | Soudage á l'arc sous gaz avec
électrode de tungstène
(GTAW) | toutes conditions | 12 | | moyen | de 1 á 6 po. (25 á 150 mm) | 4 ou 5 | Soudage á l'hydrogène
atomique (AHW) | toutes conditions | 12 | | épais | plus de 6 po. (150 mm) | 5 ou 6 | Soudage á l'arc avec électrode de carbone (CAW) toutes conditions | | 12 | | Soudage aux gaz | | | Soudage á l'arc Plasma (PAW) | toutes dimensions | 12 | | mince | moins de 1/8 po. (3 mm) | 4 ou 5 | Gougeage Air-Arc avec
électrode de carbone | | | | moyen | de 1/8 á 1/2 po. (3 á 12 mm) | 5 ou 6 | mince | | 12 | | épais | plus de 1/2 po. (12 mm) | 6 ou 8 | épais | | 14 | | Soudage á l'arc avec
électrode enrobees
(SMAW) | moins de 5/32 po. (4 mm) | 10 | Coupage á l'arc Plasma (PAC) | | | | | 5/32 á 1/4 po. (4 á 6.4 mm) | 12 | mince | moins de 300 amperès | 9 | | | plus de 1/4 po. (6.4 mm) | 14 | moyen | de 300 á 400 amperès | 12 | | | | | épais | plus de 400 amperès | 14 | ### **AVERTISSEMENT** #### LE SOUDAGE PEUT CAUSER UN INCENDIE OU UNE EXPLOSION L'arc produit des étincellies et des projections. Les particules volantes, le métal chaud, les projections de soudure et l'équipement surchauffé peuvent causer un incendie et des brûlures. Le contact accidentel de l'électrode ou du fil-électrode avec un objet métallique peut provoquer des étincelles, un échauffement ou un incendie. - Protégez-vous, ainsi que les autres, contre les étincelles et du métal chaud. - 2. Ne soudez pas dans un endroit où des particules volantes ou des projections peuvent atteindre des matériaux inflammables. - Enlevez toutes matières inflammables dans un rayon de 10, 7 mètres autour de l'arc, ou couvrez-les soigneusement avec des bâches approuvées. - Méfiez-vous des projections brulantes de soudage susceptibles de pénétrer dans des aires adjacentes par de petites ouvertures ou fissures. - Méfiez-vous des incendies et gardez un extincteur à portée de la main. - 6. N'oubliez pas qu'une soudure réalisée sur un plafond, un plancher, une cloison ou une paroi peut enflammer l'autre côté. - 7. Ne soudez pas un récipient fermé, tel un réservoir ou un baril. - Connectez le câble de soudage le plus près possible de la zone de soudage pour empêcher le courant de suivre un long parcours inconnu, et prévenir ainsi les risques d'électrocution et d'incendie. - 9. Ne dégelez pas les tuyaux avec un source de courant. - 10. Otez l'électrode du porte-électrode ou coupez le fil au tube-contact lorsqu'inutilisé après le soudage. - Portez des vêtements protecteurs non huileux, tels des gants en cuir, une chemise épaisse, un pantalon revers, des bottines de sécurité et un casque. LES ETINCELLES ET LES PROJECTIONS BRULANTES PEUVENT CAUSER DES BLESSURES. Le piquage et le meulage produisent des particules métalliques volantes. En refroidissant, la soudure peut projeter du éclats de laitier. - Portez un écran facial ou des lunettes protectrices approuvées. Des écrans latéraux sont recommandés. - 2. Portez des vêtements appropriés pour protéger la peau. ### LES BOUTEILLES ENDOMMAGEES PEUVENT EX-PLOSER Les bouteilles contiennent des gaz protecteurs sous haute pression. Des bouteilles endommagées peuvent exploser. Comme les bouteilles font normalement partie du procédé de soudage, traitez-les avec soin. - 1. Protégez les bouteilles de gaz comprimé contre les sources de chaleur intense, les chocs et les arcs de soudage. - 2. Enchainez verticalement les bouteilles à un support ou à un cadre fixe pour les empêcher de tomber ou d'être renversées. - Eloignez les bouteilles de tout circuit électrique ou de tout soudage. - Empêchez tout contact entre une bouteille et une électrode de soudage. - N'utilisez que des bouteilles de gaz protecteur, des détendeurs, des boyauxs et des raccords conçus pour chaque application spécifique; ces équipements et les pièces connexes doivent être maintenus en bon état. - Ne placez pas le visage face à l'ouverture du robinet de la bouteille lors de son ouverture. - 7. Laissez en place le chapeau de bouteille sauf si en utilisation ou lorsque raccordé pour utilisation. - Lisez et respectez les consignes relatives aux bouteilles de gaz comprimé et aux équipements connexes, ainsi que la publication P-1 de la CGA, identifiée dans la liste de documents ci-dessous. LES MOTEURS PEUVENT ETRE DANGEREUX LES GAZ D'ECHAPPEMENT DES MOTEURS PEUVENT ETRE MORTELS. Les moteurs produisent des gaz d'échappement nocifs. - Utilisez l'équipement à l'extérieur dans des aires ouvertes et bien ventilées. - Si vous utilisez ces équipements dans un endroit confiné, les fumées d'échappement doivent être envoyées à l'extérieur, loin des prises d'air du bâtiment. LE CARBURANT PEUR
CAUSER UN INCENDIE OU UNE EXPLOSION. Le carburant est hautement inflammable. 1. Arrêtez le moteur avant de vérifier le niveau e carburant ou de faire le plein. - 2. Ne faites pas le plein en fumant ou proche d'une source d'étincelles ou d'une flamme nue. - 3. Si c'est possible, laissez le moteur refroidir avant de faire le plein de carburant ou d'en vérifier le niveau au début du soudage. - 4. Ne faites pas le plein de carburant à ras bord: prévoyez de l'espace pour son expansion. - Faites attention de ne pas renverser de carburant. Nettoyez tout carburant renversé ayant de faire démarrer le moteur. DES PIECES EN MOUVEMENT PEUVENT CAUSER DES BLESSURES. Des pièces en mouvement, tels des ventilateurs, des rotors et des courroies peuvent couper doigts et mains, ou accrocher des vêtements amples. - Assurez-vous que les portes, les panneaux, les capots et les protecteurs soient bien fermés. - 2. Avant d'installer ou de connecter un système, arrêtez le moteur. - Seules des personnes qualifiées doivent démonter des protecteurs ou des capots pour faire l'entretien ou le dépannage nécessaire. - 4. Pour empêcher un démarrage accidentel pendant l'entretien, débranchez le câble d'accumulateur à la borne négative. - N'approchez pas les mains ou les cheveux de pièces en mouvement; elles peuvent aussi accrocher des vêtements amples et des outils. - Réinstallez les capots ou les protecteurs et fermez les portes après des travaux d'entretien et avant de faire démarrer le moteur. DES ETINCELLES PEUVENT FAIRE EXPLOSER UN ACCU-MULATEUR; L'ELECTROLYTE D'UN ACCUMU-LATEUR PEUT BRULER LA PEAU ET LES YEUX. Les accumulateurs contiennent de l'électrolyte acide et dégagent des vapeurs explosives. - Portez toujours un écran facial en travaillant sur un accumu-lateur. - Arrêtez le moteur avant de connecter ou de déconnecter des câbles d'accumulateur. - N'utilisez que des outils anti-étincelles pour travailler sur un accumulateur. - 4. N'utilisez pas une source de courant de soudage pour charger un accumulateur ou survolter momentanément un véhicule. - 5. Utilisez la polarité correcte (+ et -) de l'accumulateur. LA VAPEUR ET LE LIQUIDE DE REFROIDISSEMENT BRULANT SOUS PRESSION PEUVENT BRULER LA PEAU ET LES YEUX. Le liquide de refroidissement d'un radiateur peut être brûlant et sous pression. - N'ôtez pas le bouchon de radiateur tant que le moteur n'est pas refroidi. - Mettez des gants et posez un torchon sur le bouchon pour l'ôter. - Laissez la pression s'échapper avant d'ôter complètement le bouchon. #### PLOMB AVERTISSEMENT Ce produit contient des produits chimiques, comme le plomb, ou engendre des produits chimiques, reconnus par l'état de Californie comme pouvant être à l'origine de cancer, de malformations fœtales ou d'autres problèmes de reproduction. Il faut se laver les mains après toute manipulation. (Code de Californie de la sécurité et santé, paragraphe 25249.5 et suivants) ## 1.07 Informations Générales de Sécurité ## A Prévention D'incendie Les opérations de soudage utilisent le feu ou la combustion comme outil de base. Ce processus est très utile quand il est correctement contrôlé. - 1. La zone doit comporter un sol ignifugé. - 2. Les établis ou tables utilisés pendant les opérations de soudage doivent avoir un revêtement ignifuge. - Utilisez des écrans résistants à la chaleur ou en matériau approuvé pour protéger les cloisons proches ou le sol vulnérable des étincelles et du métal chaud. - Gardez un extincteur approuvé du bon type et de la bonne taille dans la zone de travail. Inspectez-le régulièrement pour vous assurer qu'il est en état de fonctionner. Apprenez à vous en servir. - Enlevez tous les matériaux combustibles de la zone de travail. Si vous ne pouvez pas les enlever, protégez-les avec une couvre ignifuge. ## **AVERTISSEMENT** N'effectuez JAMAIS d'opérations de soudage sur un récipient qui a contenu des liquides ou vapeurs toxiques, combustibles ou inflammables. N'effectuez JAMAIS d'opérations de soudage dans une zone contenant des vapeurs combustibles, des liquides inflammables ou des poussières explosives. #### B Entretien des Locaux #### **AVERTISSEMENT** Ne laissez jamais l'oxygène en contact avec la graisse, l'huile ou d'autres substances inflammables. Bien que l'oxygène ellemême ne brûle pas, ces substances peuvent devenir extrêmement explosives. Elles peuvent prendre feu et brûler violemment en présence d'oxygène. Gardez **TOUS** les appareils propres et exempts de graisse, huile ou autres substances inflammables. #### C Aération ## **AVERTISSEMENT** Ventilez les zones de soudage, chauffage et découpage de façon adéquate pour éviter l'accumulation de gaz explosifs ou toxiques. Certaines combinaisons de métaux, revêtements et gaz génèrent des fumées toxiques: Utilisez un équipement de protection respiratoire dans ces circonstances. Si vous soudez ou brasez, lisez et assimilez la fiche technique de sécurité de matériau relative à l'alliage de soudage/brasage. #### **D** Protection Personnelle Les flammes de gaz produisent une radiation infrarouge qui peut avoir un effet néfaste sur la peau, et particulièrement sur les yeux. Choisis-sez des lunettes ou un masque avec des verres trempés assombris au niveau 4 ou plus sombre, pour protéger vos yeux des dommages et garder une bonne visibilité sur le travail. Portez en permanence des gants de protection et des vêtements ignifuges pour la protection de la peau et des vêtements contre les étincelles et le laitier. Gardez col, manches et poches boutonnés. Il ne faut pas remonter vos manches ou les pantalons à revers. Quand vous travaillez dans un environnement non dédié au soudage ou découpage, portez toujours une protection des yeux appropriées ou un masque facial. #### **AVERTISSEMENT** Mettez en pratique les procédures de sécurité et de mode opératoire suivantes à chaque fois que vous utilisez cet appareil de régulation de pression. Si vous déviez de ces procédures, cela peut entraîner incendie, explosion, dégâts matériels et/ou blessures corporelles pour l'opérateur. #### E Bouteilles de Gaz Comprimé Le Département des Transports américain (DOT) approuve la conception et la fabrication des bouteilles qui contiennent les gaz utilisés pour les opérations de soudage ou de découpage. Placez la bouteille (Le schéma 1) là où elle sera utilisée. Gardez-la en position verticale. Fixez-la sur un chariot une cloison, un établi, etc. Le schéma 1-1: Cylindres de gaz #### **AVERTISSEMENT** Les bouteilles sont sous haute pression. Manipulez-les avec précautions. Des accidents sérieux peuvent résulter d'une mauvaise manutention ou d'un mauvais emploi des bouteilles de gaz comprimé. NE faites PAS tomber la bouteille, ne la cognez pas, ne l'exposez pas à une chaleur excessive, aux flammes ou étincelles. NE la cognez PAS contre d'autres bouteilles. Contactez votre fournisseur de gaz ou reportezvous à la publication CGA P-1 "Manipulation sécurisée des gaz comprimés en conteneur" pour plus d'informations sur l'utilisation et la manutention des bouteilles. #### **AVIS** Ce document CGA p. t peut être obtenu en écrivant à "Compressed Gas Association", 4221 Walney Roed, 5th Floor. Chantilly, VA 20151.2923, USA. - Placez le bouchon de protection de vanne sur la bouteille à chaque fois que vous la déplacez ou ne l'utilisez pas. Ne faites jamais glisser ou rouler d'aucune manière les bouteilles. Utilisez un diable approprié pour les déplacer. - Entreposez les bouteilles vides à l'écart des bouteilles pleines. Marquez-les "VIDE" et refermez leur vanne. - N'utilisez JAMAIS des bouteilles de gaz comprimé sans un régulateur de pression en série sur la vanne de bouteille. - 5. Inspectez la vanne de bouteille pour y détecter de l'huile ou de la graisse, ou dès pièces endommagées. N'UTILISEZ PAS la bouteille si vous trouvez de l'huile, de la graisse ou des pièces endommagées. Informez immédiatement votre fournisseur de' gaz de cet état. Ouvrez et fermez momentanément la vanne de la bouteille, délogeant ainsi d'éventu lles poussières ou saletés, qui pourraient être présentes dans la vanne. #### Mise en Garde Ouvrez la vanne de bouteille légèrement. Si vous l'ouvrez trop en grand, la bouteille pourrait se renverser. Quand vous ouvrez/fermez rapidement la vanne de bouteille, ne vous tenez pas directement devant. Opérez toujours cette opération dans une zone bien ventilée. Si une bouteille d'acétylène crache un brouillard, laissez reposer pendant 15 minutes. Essayez de nouveau la vanne. Si le problème persiste, contactez votre fournisseur de gaz. ## 1.08 Principales Normes De Securite <u>Safety in Welding and Cutting</u>, norme ANSI Z49.1, American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33128. <u>Safety and Health Standards</u>, OSHA 29 CFR 1910, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Recommended Safe Practices for the Preparation for Welding and Cutting of Containers That Have Held Hazardous Substances, norme AWS F4.1, American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33128. <u>National Electrical Code</u>, norme 70 NFPA, National Fire Protection Association, Batterymarch Park, Quincy, MA 02269. <u>Safe Handling of Compressed Gases in Cylinders</u>, document P-1, Compressed Gas Association, 1235 Jefferson Davis Highway, Suite 501, Arlington, VA 22202. <u>Code for Safety in Welding and Cutting</u>, norme CSA W117.2 Association canadienne de normalisation, Standards Sales, 276 Rexdale Boulevard, Rexdale, Ontario, Canada M9W 1R3. <u>Safe Practices for Occupation and Educational Eye and Face Protection</u>, norme ANSI Z87.1, American National Standards Institute, 1430 Broadway, New York, NY 10018. <u>Cutting and Welding Processes</u>, norme 51B NFPA, National Fire Protection Association, Batterymarch Park, Quincy, MA 02269. ## 1.09 Graphique de Symbole Seulement certains de ces symboles apparaîtront sur votre modèle. | U | Sous Tension | |----------|---| | 0 | Hors Tension | | 4 | Tension dangereuse
 | | Augmentez/Diminuer | | 0 0 | Disjoncteur | | ~ | Source AC Auxiliaire | | | Fusible | | Α | Intensité de Courant | | V | Tension | | Hz | Hertz (cycles/sec) | | f | Fréquence | | | Négatif | | + | Positif | | === | Courant Continue (DC) | | | Terre de Protection | | ₽ | Ligne | | | Connexion de la Ligne | | IĐ∕ | Source Auxiliaire | | 115V 15A | Classement de Prise-
Source Auxiliaire | | | votre modele. | |----------|--| | 1 \sim | Mono Phasé | | 3~ | Trois Phasé | | 3~⊠₩= | Tri-Phase Statique
Fréquence Convertisseur
Transformateur-Redresseur | | 1 | Distant | | X | Facteur de Marche | | % | Pourcentage | | 0 | Panneau/Local | | <u>.</u> | Soudage Arc Electrique
Avec Electrode Enrobé
(SMAW) | | .Ħ | Soudage á L'arc Avec
Fil Electrodes Fusible
(GMAW) | | | Soudage á L'arc Avec
Electrode Non Fusible
(GTAW) | | | Decoupe Arc Carbone
(CAC-A) | | 7 | Courant Constant | | | Tension Constante Ou Potentiel Constant | | | Haute Température | | P | Force d'Arc | | <u> </u> | Amorçage de L'arc au
Contact (GTAW) | | yh- | Inductance Variable | | v | Tension | | | | | 00 | Déroulement du Fil | |--|---| | ofo | Alimentation du Fil Vers
la Pièce de Fabrication
Hors Tension | | F | Torch de Soudage | | \$F | Purge Du Gaz | | | Mode Continu de
Soudure | | | Soudure Par Point | | - Ft | Duréc du Pulse | | t1\$F | Durée de Pré-Dèbit | | F 12 | Durée de Post-Dèbit | | Détente à 2-Temps Appuyez pour dèruarer l'alimentation du fils et la soudure, le relâcher pour arrêter. Détente à 4-Temps Maintenez appuyez pour pré-dèbit, relailez pour initier l'arc. Appuyez pour arrêter l'arc, et mainteuir pour pré-dèbit. | | | . <u>∵.</u> t | Probléme de Terre | | IPM | Pouces Par Minute | | МРМ | Mètres Par Minute | | | | Art # A-07639 ## **SECTION 2:** INTRODUCTION ## 2.01 How to Use This Manual This Operating Manual usually applies to the part numbers listed on page i. If none are underlined, they are all covered by this manual. To ensure safe operation, read the entire manual, including the chapter on safety instructions and warnings. Throughout this manual, the word WARNING, CAUTION and NOTE may appear. Pay particular attention to the information provided under these headings. These special annotations are easily recognized as follows: ### WARNING Gives information regarding possible personal injury. Warnings will be enclosed in a box such as this. ## **CAUTION** Refers to possible equipment damage. Cautions will be shown in bold type. #### NOTE Offers helpful information concerning certain operating procedures. Notes will be shown in italics ## 2.02 Equipment Identification The unit's identification number (specification or part number), model, and serial number usually appear on a nameplate attached to the machine. Equipment which does not have a nameplate attached to the machine is identified only by the specification or part number printed on the shipping container. Record these numbers for future reference. ## 2.03 Receipt of Equipment When you receive the equipment, check it against the invoice to make sure it is complete and inspect the equipment for possible damage due to shipping. If there is any damage, notify the carrier immediately to file a claim. Furnish complete information concerning damage claims or shipping errors to the location in your area listed in the inside back cover of this manual. Include all equipment identification numbers as described above along with a full description of the parts in error. ## 2.04 Description This compact inverter welding machine has infinitely adjustable welding current from 10 to 160 amps. It uses standard general purpose STICK (SMAW) 3/32" (2.5mm) electrodes for light gauge work, generally less than 1/8" (3.2mm) thick and STICK (SMAW) 1/8" (3.2mm) electrodes for heavier material. The unit also has a LIFT TIG (GTAW) welding mode that offers stable TIG welding characteristics when used with a suitable TIG torch and shielding gas. ## 2.05 Transportation Methods ## WARNING ELECTRIC SHOCK can kill. DO NOT TOUCH live electric parts. Disconnect input power conductors from de-energized supply line before moving the welding power source. #### WARNING FALLING EQUIPMENT can cause serious personal injury and equipment damage. Lift unit with handle on top of case. Use handcart or similar device of adequate capacity. If using a fork lift vehicle, place secure unit on a proper skid before transporting. ## 2.06 Duty Cycle The rated duty cycle of a Welding Power Source, is the percentage of a ten minute time period that it may be operated at its rated output current without exceeding the temperature limits of the insulation of the component parts. To explain the 10 minute duty cycle period, suppose a Welding Power Source is designed to operate with a 30% duty cycle at 160 amperes and 26.4 volts. This means that it has been designed and built to provide the rated amperage (160A) for 3 minutes, i.e. arc welding time, out of every 10 minute period (30% of 10 minutes is 3 minutes). During the other 7 minutes of the 10 minute period the Welding Power Source must idle and be allowed to cool. THERMAL ARC 161 S INTRODUCTION ## 2.07 Specifications | Power Source Part Number | W10 | 03600 | |--|--|---| | Mains Power | | | | Nominal Supply Voltage | AC 115V | AC 208/230V | | Number of Phases | Single Phase | Single Phase | | Input Voltage Range | AC 104- 127V | AC 187- 253V | | Nominal Supply Frequency | 50/60 Hz | 50/60 Hz | | Effective Input Current (I1eff) | 16.7 Amps | 12.7 Amps | | Maximum Input Current (I1 max) | Δ 27.3 Amps | Δ 25 Amps | | Single Phase Generator Requirements [Continuous rating at nominal supply voltage with maximum output for STICK (SMAW) welding] | 4 KVA | 6 KVA | | Welding Output | | | | Welding Current Range | 10 - 110 Amps | 10 - 160 Amps | | Nominal DC Open Circuit Voltage (OCV) | 71V | 71V | | Welding Output, 104° F (40° C), 10 min.
(Quoted figures refer to STICK (SMAW) output) | 100A @ 35%, 24.0V
80A @ 60%, 23.2V
60A @ 100%, 22.4V | 160A @ 30%, 26.4V
100A @ 60%, 24.0V
80A @ 100%, 23.2V | | Rated Input Current (A) | 27.3A | 25A | | for STICK (SMAW) Welding | lo = 100A @ 24.0V | Io = 160A @ 26.4V | | Rated Input Current (A) | 19A | 15.5A | | for LIFT TIG (GTAW) Welding | lo = 110A @ 14.4V | lo = 160A @ 16.4V | | Rated Output for STICK (SMAW) Welding | 24.0V, 100A @ 35% | 26.4V, 160A @ 30% | | Rated Output for LIFT TIG (GTAW) Welding | 14.4V, 110A @ 50% | 16.4V, 160A @ 30% | | Duty Cycle (%) | 35% @ 100A | 30% @ 160A | | Welder Type | Inverter Po | ower Source | | Output Terminal Type Heavy Duty Dinse™ 50 | | / Dinse™ 50 | | Classification | | | | Protection Class | IP. | 23S | | Standards | EN 60974-1
EN50199 | | | Cooling Method Fan Cooled | | Cooled | | Dimensions and Weight | | | | Welding Power Source Mass | 17.4 lb. (7.9 kg) | | | Welding Power Source Dimensions (Height x Width x Depth) | H 9.0" x W 5.3" x D 15.5" | | | | (H230mm x W13 | 35mm x D393mm) | $[\]Delta$ The recommended time delay fuse or circuit breaker size is 30 amp. An individual branch circuit capable of carrying 30 amperes and protected by fuses or circuit breaker is recommended for this application. Fuse size is based on not more than 200 percent of the rated input amperage of the welding power source (Based on Article 630, National Electrical Code) Thermal Arc continuously strives to produce the best product possible and therefore reserves the right to change, improve or revise the specifications or design of this or any product without prior notice. Such updates or changes do not entitle the buyer of equipment previously sold or shipped to the corresponding changes, updates, improvements or replacement of such items. The values specified in the table above are optimal values, your values may differ. Individual equipment may differ from the above specifications due to in part, but not exclusively, to any one or more of the following; variations or changes in manufactured components, installation location and conditions and local power grid supply conditions.. Introduction 2-2 Manual 0-5073 ## **SECTION 3: INSTALLATION** ## 3.01 Environment These units are designed for use in environments with increased hazard of electric shock. Examples of environments with increased hazard of electric shock are: - A. In locations in which freedom of movement is restricted, so that the operator is forced to perform the work in a cramped (kneeling, sitting or lying) position with physical contact with conductive parts. - B. In locations which are fully or partially limited by conductive elements, and in which there is a high risk of unavoidable or accidental contact by the operator. - C. In wet or damp hot locations where humidity or perspiration considerably reduces the skin resistance of the human body and the insulation properties of accessories. Environments with increased hazard of electric shock do not include places where electrically conductive parts in the near vicinity of the operator, which can cause increased hazard, have been insulated. ## 3.02 Location Be sure to locate the welder according to the following guidelines: - In areas, free from moisture and dust. - Ambient temperature between 32°F (0°C) to 104° F (40°C). - In areas, free from oil, steam and corrosive gases. - In areas, not subjected to abnormal vibration or shock. -
In areas, not exposed to direct sunlight or rain. - Place at a distance of 12" (300mm) or more from walls or similar that could restrict natural air flow for cooling Thermal Arc advises that this equipment be electrically connected by a qualified electrician. ## 3.03 Electrical Input Connections ELECTRIC SHOCK can kill; SIGNIFICANT DC VOLTAGE is present after removal of input power. **DO NOT TOUCH** live electrical parts. **SHUT DOWN** welding power source, disconnect input power employing lockout/tagging procedures. Lock-out/tagging procedures consist of padlocking line disconnect switch in open position, removing fuses from fuse box, or shutting off and red-tagging circuit breaker or other disconnecting device. ## • Electrical Input Requirements Operate the welding power source from a single-phase 50/60 Hz, AC power supply. The input voltage must match one of the electrical input voltages shown on the input data label on the unit nameplate. Contact the local electric utility THERMAL ARC 161 S INSTALLATION for information about the type of electrical service available, how proper connections should be made, and inspection required. The line disconnect switch provides a safe and convenient means to completely remove all electrical power from the welding power supply whenever necessary to inspect or service the unit. **Do not** connect an input (WHITE or BLACK) conductor to the ground terminal. **Do not** connect the ground (GREEN) conductor to an input line terminal. ## Refer to Figure 3-1: - 1. Connect end of ground (GREEN or GREEN/YELLOW) conductor to a suitable ground. Use a grounding method that complies with all applicable electrical codes. - 2. Connect ends of line 1 (BLACK) and line 2 (WHITE) input conductors to a de-energized line disconnect switch. - 3. Use Table 3-1 as a guide to select line fuses for the disconnect switch. | Input Voltage | Circuit Breaker or Fuse Size | |---------------|------------------------------| | 115V | 30A | | 208-230V | 50A | Table 3-1: Fuse Guide The time-delay fuses or circuit breaker of an individual branch circuit may have nuisance tripping when welding with this product due to the amperage rating of the time-delay fuses or circuit breaker. Figure 3-1: Electrical Input Connections ## **Input Power** Each unit incorporates an INRUSH circuit. When the MAIN CIRCUIT SWITCH is turned on, the inrush circuit provides pre-charging for the input capacitors. A relay in the Power Control Assembly (PCA) will turn on after the input capacitors have charged to operating voltage (after approximately 5 seconds) ## NOTE Damage to the PCA could occur if 253 VAC or higher is applied to the Primary Power Cable. | Model | Primary Supply Lead | | Current & Duty Cycle | | |----------------------|-----------------------|------------------------------------|----------------------|--------------| | | Size (Factory Fitted) | Current Circuit Size
(Vin/Amps) | LIFT TIG (GTAW) | STICK (SMAW) | | Thermal Arc
161 S | 12 AWG (3.3mm²) | 115V/27.3A | - | 100A @ 35% | | | | 115V/20A | 110A @ 50% | - | | | | 208-230V/25A | - | 160A @ 30% | | | | 208-230V/15A | 160A @ 30% | - | Table 3-2: Primary Circuit Sizes to Achieve Maximum Current THERMAL ARC 161 S INSTALLATION ## 3.04 Electromagnetic Compatibility WARNING Extra precautions for Electromagnetic Compatibility may be required when this Welding Power Source is used in a domestic situation. ## A. Installation and Use - Users Responsibility The user is responsible for installing and using the welding equipment according to the manufacturer's instructions. If electromagnetic disturbances are detected then it shall be the responsibility of the user of the welding equipment to resolve the situation with the technical assistance of the manufacturer. In some cases this remedial action may be as simple as earthing the welding circuit, see NOTE below. In other cases it could involve constructing an electromagnetic screen enclosing the Welding Power Source and the work, complete with associated input filters. In all cases, electromagnetic disturbances shall be reduced to the point where they are no longer Trouble-some. #### B. Assessment of Area Before installing welding equipment, the user shall make an assessment of potential electromagnetic problems in the surrounding area. The following shall be taken into account. - 1. Other supply cables, control cables, signaling and telephone cables; above, below and adjacent to the welding equipment. - 2. Radio and television transmitters and receivers. - 3. Computer and other control equipment. - 4. Safety critical equipment, e.g. guarding of industrial equipment. - 5. The health of people around, e.g. the use of pace-makers and hearing aids. - 6. Equipment used for calibration and measurement. - 7. The time of day that welding or other activities are to be carried out. - 8. The immunity of other equipment in the environment: the user shall ensure that other equipment being used in the environment is compatible: this may require additional protection measures. The size of the surrounding area to be considered will depend on the structure of the building and other activities that are taking place. The surrounding area may extend beyond the boundaries of the premises. ## C. Methods of Reducing Electromagnetic Emissions ## 1. Mains Supply Welding equipment should be connected to the mains supply according to the manufacturer's recommendations. If interference occurs, it may be necessary to take additional precautions such as filtering of the mains supply. Consideration should be given to shielding the supply cable of permanently installed welding equipment in metallic conduit or equivalent. Shielding should be electrically continuous throughout its length. The shielding should be connected to the Welding Power Source so that good electrical contact is maintained between the conduit and the Welding Power Source enclosure. ## 2. Maintenance of Welding Equipment The welding equipment should be routinely maintained according to the manufacturer's recommendations. All access and service doors and covers should be closed and properly fastened when the welding equipment is in operation. The welding equipment should not be modified in any way except for those changes and adjustments covered in the manufacturer's instructions. In particular, the spark gaps of arc striking and stabilizing devices should be adjusted and maintained according to the manufacturer's recommendation ## 3. Welding Cables The welding cables should be kept as short as possible and should be positioned close together, running at or close to the floor level. ## 4. Equipotential Bonding Bonding of all metallic components in the welding installation and adjacent to it should be considered. However, metallic components bonded to the work piece will increase the risk that the operator could receive a shock by touching the metallic components and the electrode at the same time. The operator should be insulated from all such bonded metallic components. ## 5. Earthing of the Work Piece Where the work piece is not bonded to earth for electrical safety, nor connected to earth because of its size and position, e.g. ship's hull or building steelwork, a connection bonding the work piece to earth may reduce emissions in some, but not all instances. Care should be taken to prevent the earthing of the work piece increasing the risk of injury to users, or damage to other electrical equipment. Where necessary, the connection of the work piece to earth should be made by direct connection to the work piece, but in some countries where direct connection is not permitted, the bonding should be achieved by suitable capacitance, selected according to national regulations. ## 6. Screening and Shielding Selective screening and shielding of other cables and equipment in the surrounding area may alleviate problems of interference. Screening the entire welding installation may be considered for special applications. ## 3.05 Setup for Welding ## NOTE Conventional operating procedures apply when using the Welding Power Source, i.e. connect work lead directly to work piece and electrode lead is used to hold electrode. Wide safety margins provided by the design ensure that the Welding Power Source will withstand short-term overload without adverse effects. The welding current range values should be used as a guide only. Current delivered to the arc is dependent on the welding arc voltage, and as welding arc voltage varies between different classes of electrodes, welding current at any one setting would vary according to the type of electrode in use. The operator should use the welding current range values as a guide then fine tune the welding current to suit the application. ## WARNING Before connecting the work clamp to the work and inserting the electrode in the electrode holder make sure the Primary power supply is switched off. ### **CAUTION** Remove any packaging material prior to use. Do not block the air vents at the front or rear of the Welding Power Source. ## 3.06 STICK (SMAW) Setup Figure 3-2: Setup for STICK (SMAW) Welding STICK (SMAW) Mode Sequence of Operation Before any welding is to begin, be sure to wear all appropriate and recommended safety equipment. - 1. Switch the ON/OFF Switch (located on the rear panel) to OFF. - 2. Connect the ground clamp cable to the negative output terminal, and the electrode holder cable to the positive output terminal. ### NOTE This set up is known as DC Electrode Positive or reverse polarity. Please consult with the stick electrode manufacturer for specific polarity recommendations. - 3. Connect the ground clamp to your workpiece. - 4. Plug the power cable into the appropriate outlet, and turn the switch to the "ON" position. The power L.E.D light should illuminate. - 5. Set the "Process Selection Switch" to STICK. - 6. Set the weld current control knob to the desired amperage. - 7. Install a stick electrode in the electrode holder. - 8.
You are now ready to begin STICK Welding ## NOTE Gently strike the electrode on the work piece to generate a welding arc, and slowly move along the work piece while holding a consistent arc length above base metal. ## 3.07 LIFT TIG (GTAW) Setup Figure 3-3: Setup for LIFT TIG (GTAW) Welding LIFT TIG (GTAW) Sequence of Operation Before any welding is to begin, be sure to wear all appropriate and recommended safety equipment. - 1. Switch the ON/OFF Switch (located on the rear panel) to OFF. - 2. Connect the ground clamp cable to positive output terminal, and the TIG torch cable to the negative output terminal. ## NOTE This set up is known as Straight Polarity or DC Electrode Negative. This is commonly used for DC TIG welding on most materials such as steel and stainless steel. - 3. Using a secured Argon cylinder, slowly crack open then close the cylinder valve while standing off to the side of the valve. This will remove any debris that may be around the valve & regulator seat area. - 4. Install the regulator (for details of VICTOR regulator, please refer to 3.08) and tighten with a wrench. - 5. Connect the gas hose to the outlet of the Argon regulator, and tighten with a wrench. - 6. Be sure the gas valve on the torch is closed, and slowly open the Argon Cylinder Valve to the fully open position. - 7. Connect the ground clamp to your work piece. - 8. Plug the power cable into the appropriate outlet, and turn the switch to the "ON" position. The power L.E.D. light should illuminate. THERMAL ARC 161 S INSTALLATION - 9. Set the "Process Selection Switch" to LIFT TIG - 10. Set the weld current control knob to the desired amperage. - 11. The tungsten must be ground to a blunt point in order to achieve optimum welding results. It is critical to grind the tungsten electrode in the direction the grinding wheel is turning. - 12. Install the tungsten with approximately 1/8" to 1/4" sticking out from the gas cup, ensuring you have correct sized collet. - 13. Tighten the back cap then open the valve on the torch. - 14. You are now ready to begin TIG Welding. ## 3.08 Victor Regulator Pressure regulator (Figure 3-4) attached to the cylinder valve reduce high cylinder pressures to suitable low working pressures for welding, cutting, and other applications. Figure 3-4: Victor CS Regulator Use the regulator for the gas and pressure for which it is designed. NEVER alter a regulator for use with any other gas. ## NOTE Regulators purchased with open 1/8", 1/4", 3/8", or 1/2" NPT ports must be assembled to their intended system. Note the maximum inlet pressure stamped on the regulator. DO NOT attach the regulator to a system that has a higher pressure than the maximum rated pressure stamped on the regulator. - 2. The regulator body will be stamped "IN" or "HP" at the inlet port. Attach the inlet port to the system supply pressure connection. - 3. Wrap pipe threads with Teflon tape 1 1/2 to 2 turns to effect a seal. If other sealants are used, they must be compatible with the gas that will be used in the system. - 4. If gauges are to be attached to the regulator and the regulator is stamped and listed by a third party (i.e. "UL" or "ETL"). The following requirements must be met: - a) Inlet gauges over 1000 PSIG (6.87 mPa) shall conform with the requirements of UL 404, "Indicating Pressure Gauges for Compressed Gas Service." - b) Low pressure gauges must be UL recognized for the class of regulator they are being used on according to UL252A. DO NOT use a regulator that delivers pressure exceeding the pressure rating of the downstream equipment unless provisions are made to prevent over-pressurization (i.e. system relief valve). Make sure the pressure rating of the downstream equipment is compatible with the maximum delivery pressure of the regulator. 5. Be sure that the regulator has the correct pressure rating and gas service for the cylinder used. 6. Carefully inspect the regulator for damaged threads, dirt, dust, grease, oil, or other flammable substances. Remove dust and dirt with a clean cloth. Be sure the inlet swivel filter is clean and in place. Attach the regulator (Figure 3-5) to the cylinder valve. Tighten securely with a wrench. ### WARNING DO NOT attach or use the regulator if oil, grease, flammable substances or damage is present! Have a qualified repair technician clean the regulator or repair any damage. Figure 3-5: Regulator to Cylinder Valve - 7. Before opening the cylinder valve, turn the regulator adjusting screw counterclockwise until there is no pressure on the adjusting spring and the screw turns freely. - 8. Relief Valve (where provided): The relief valve is designed to protect the low pressure side of the regulator from high pressures. Relief valves are not intended to protect downstream equipment from high pressures. ## WARNING DO NOT tamper with the relief valve or remove it from the regulator. ## WARNING Stand to the side of the cylinder opposite the regulator when opening the cylinder valve. Keep the cylinder valve between you and the regulator. For your safety, NEVER STAND IN FRONT OF OR BEHIND A REGULATOR WHEN OPENING THE CYLINDER VALVE! 9. Slowly and carefully open the cylinder valve (Figure 3-6) until the maximum pressure shows on the high pressure gauge. Figure 3-6: Open Cylinder Valve - 10. On all cylinders, except acetylene, open the valve completely to seal the valve packing. On gaugeless regulators, the indicator will register the cylinder contents open. - 11. On acetylene cylinders, open the valve 3/4 of a turn and no more than 1-1/2. ## WARNING Acetylene delivery pressure must not exceed 15 PSIG (103 kPa) or 30 PSIG (207 kPa). Acetylene can dissociate (decompose with explosive violence) above these pressure limits. ### **CAUTION** Keep the cylinder valve wrench, if one is required, on the cylinder valve to turn off the cylinder quickly, if necessary. 12. Attach the desired downstream equipment. THERMAL ARC 161 S ## 3.09 Leak Testing the System Leak test the system before putting into operation. - 1. Be sure that there is a valve in the downstream equipment to turn off the gas flow. - 2. With the cylinder valve open, adjust the regulator to deliver the maximum required delivery pressure. - 3. Close the cylinder valve. - 4. Turn the adjusting screw/knob counterclockwise one turn. - a) If the high-pressure gauge reading drops, there is a leak in the cylinder valve, inlet fitting, or high-pressure gauge. - b) If the low-pressure gauge drops, there is a leak in the downstream equipment, hose, hose fitting, outlet fitting or low-pressure gauge. Check for leaks using an approved leak detector solution. - c) If the high-pressure gauge drops and the lowpressure gauge increases at the same time, there is a leak in the regulator seat. - d) If the regulator requires service or repair, take it to a qualified repair technician. - 5. Once leak testing has been performed and there are no leaks in the system, slowly open the cylinder valve and proceed. ## WARNING If a leak has been detected anywhere in the system, discontinue use and have the system repaired. DO NOT use leaking equipment. Do not attempt to repair a leaking system while the system is under pressure. ## 3.10 When You Finish Using the Regulator - 1. Close the cylinder valve. - 2. Open the valve on the downstream equipment. This drains all pressure from the system. - 3. Close the valve on the downstream equipment. - 4. Turn the adjusting screw counterclockwise to release the tension on the adjusting spring. - 5. Check the gauges after a few minutes for verification that the cylinder valve is closed completely. #### Storage of the Regulator 3.11 When the regulator is not in use and has been removed from the cylinder, it should be stored in an area where it will be protected from dust, oil, and grease. The inlet and outlet should be capped to protect against internal contamination and prevent insects from nesting. Manual 0-5073 Installation 3-10 ## **SECTION 4: OPERATION** Conventional operating procedures apply when using the Welding Power Source, i.e. connect work lead directly to work piece and electrode lead is used to hold the electrode. The welding current range values should be used as a guide only. Current delivered to the arc is dependent on the welding arc voltage, and as welding arc voltage varies between different classes of electrode, welding current at any one setting would vary according to the type of electrode in use. The operator should use the welding current range values as a guide then fine tune the welding current to suit the specific application. Refer to the electrode manufacture's literature for further information. ## 4.01 Front Panel #### **Front Panel** The welding power source is protected by a self re-setting thermostat. The indicator will illuminate if the duty cycle of the power source has been exceeded. If the Over Heat light illuminates wait for the Over Heat light to extinguish before resuming welding. ## (A) Process Selection Switch Switches between LIFT TIG and STICK Welding modes. ## (B) Power On Indicator The Power ON Indicator illuminates when the ON/OFF switch is in the ON position and the nominal mains voltage is present. ## (C) Fault Indicator The welding power source is protected by a self resetting thermostat and over primary current protection devices. Welding can not take place if the Fault Indicator lights up or lights up continuously. #### Thermostat Protection If the Fault Indicator lights up then the duty cycle of the power source has been exceeded, Leave the power on and wait for the Warning Indicator to extinguish before resuming welding. ## **Over Primary Current Protection** If the Fault Indicator lights up continuously then the primary current into the main transformer has been exceeded. Have an Accredited Thermal Arc Service Provider inspect then repair the welder. ## (D) Welding Current Control The welding current is increased by turning the Weld Current control knob clockwise or decreased by
turning the Weld Current control knob counterclockwise. The welding current should be set according to the specific application. Refer to the electrode manufacture's literature for further information. ## (E) ON/OFF Switch (located on rear panel - not shown) This switch controls the Mains Supply Voltage to the Power Source. Figure 4-1: Thermal Arc 161 S Controls THERMAL ARC 161 S OPERATION ## 4.02 Welding Current Control Explanation ## **15 Amp Outlet** The mains power 15 Amp circuit breaker or fuse should not trip at this Weld Current value when STICK welding. The environmental conditions that may cause the mains power 15 Amp circuit breaker or fuse to trip are: - a) High ambient temperature - b) Worn parts in circuit breaker - c) Using an extension cable - d) Low line mains power voltage ## 20 Amp Outlet The mains power 20 Amp circuit breaker or fuse should not trip at this Weld Current value when STICK welding. The environmental conditions that may cause the mains power 20 Amp circuit breaker or fuse to trip are: - a) High ambient temperature - b) Worn parts in circuit breaker - c) Using an extension cable - d) Low line mains power voltage ## **Output Scale for 115V** The inside number scale identifies the available output weld current for STICK or LIFT TIG weld modes. STICK Mode: Identifies the STICK weld point for 15 Amp outlet. ✓ Identifies the STICK weld point for 20 Amp outlet. Exceeding these points will cause nuisance tripping of the circuit breaker or fuse. LIFT TIG Mode: A 15 Amp outlet is capable of supplying enough input power for all LIFT TIG output weld current values. Nuisance tripping should not occur on a 15 Amp outlet. ## **Output Scale for 208/230V** The outside number scale identifies the available output weld current for STICK or LIFT TIG weld modes. Nuisance tripping should not occur on a 50A 208/230V outlet for both STICK & LIFT TIG Modes. Figure 4-2: Current Control ## 4.03 STICK (SMAW) Electrode Polarity Stick electrodes are generally connected to the "+" Positive Output Terminal and the work lead to the "-" Negative Output Terminal but if in doubt consult the electrode manufacturers literature for further information. ## 4.04 Effects of Stick Welding Various Materials ## High Tensile and Alloy Steels The two most prominent effects of welding these steels are the formation of a hardened zone in the weld area, and, if suitable precautions are not taken, the occurrence in this zone of under-bead cracks. Hardened zone and under-bead cracks in the weld area may be reduced by using the correct electrodes, preheating, using higher current settings, using larger electrodes sizes, short runs for larger electrode deposits or tempering in a furnace. ## Manganese Steels The effect on manganese steel of slow cooling from high temperatures is to embrittle it. For this reason it is absolutely essential to keep manganese steel cool during welding by quenching after each weld or skip welding to distribute the heat. #### Cast Iron Most types of cast iron, except white iron, are weldable. White iron, because of its extreme brittleness, generally cracks when attempts are made to weld it. Trouble may also be experienced when welding white-heart malleable, due to the porosity caused by gas held in this type of iron. ## Copper and Alloys The most important factor is the high rate of heat conductivity of copper, making pre-heating of heavy sections necessary to give proper fusion of weld and base metal. ## Types of Electrodes Arc Welding electrodes are classified into a number of groups depending on their applications. There are a great number of electrodes used for specialized industrial purposes which are not of particular interest for everyday general work. These include some low hydrogen types for high tensile steel, cellulose types for welding large diameter pipes, etc The range of electrodes dealt with in this publication will cover the vast majority of applications likely to be encountered; are all easy to use. | Metal Being Joined | Electrode | Comments | |--------------------|-----------|--| | Mild Steel | E6011 | This electrode is used for all-position welding or for welding on rusty, dirty, less-than-new metal. It has a deep, penetrating arc and is often the first choice for repair or maintenance work. | | Mild Steel | E6013 | This all-position, electrode is used for welding clean, new sheet metal. Its soft arc has minimal spatter, moderate penetration and an easy-to-clean slag. | | Mild Steel | E7014 | All positional, ease to use electrode for use on thicker steel than E6013. Especially suitable sheet metal lap joints and fillet welds, general purpose plate welding. | | Mild Steel | E7018 | A low-hydrogen, all-position electrode used when quality is an issue or for hard-to-weld metals. It has the capability of producing more uniform weld metal, which has better impact properties at low temperatures. | | Cast Iron | Eni-Cl | Suitable for joining all cast irons except white cast iron. | | Stainless Steel | E318L-16 | High corrosion resistances. Ideal for dairy work etc. | THERMAL ARC 161 S OPERATION ## 4.05 GTAW Electrode Polarity Connect the TIG torch to the "-" Negative Output Terminal and the work lead to the "+" Positive Output Terminal for direct current straight polarity. Direct current straight polarity is the most widely used polarity for DC TIG welding. It allows limited wear of the electrode since 70% of the heat is concentrated at the work piece. ## 4.06 Guide for Selecting Filler Wire | Filler Wire Diameter | DC Current (Amps) | |----------------------|-------------------| | 1/16" (1.6mm) | 20 - 90 | | 3/32" (2.4mm) | 65 - 115 | | 1/8" (3.2mm) | 100 - 165 | ## 4.07 Tungsten Electrode Current Ranges | Electrode Diameter | DC Current | |--------------------|------------| | .040" (1.0mm) | 25 - 85 | | 1/16" (1.6mm) | 50 - 160 | | 3/32" (2.4mm) | 135 - 235 | ## 4.08 Shielding Gas Selection | Alloy | Shielding Gas | |-----------------|---------------| | Carbon Steel | Welding Argon | | Stainless Steel | Welding Argon | | Nickel Alloy | Welding Argon | | Copper | Welding Argon | | Titanium | Welding Argon | ## 4.09 Tungsten Electrode Types | Electrode Type
(Ground Finish) | Welding Application | Features | Color Code | |-----------------------------------|---|--|------------| | 1 100013140 7% | | Excellent arc starting, long life, high current carrying capacity. | Red | | | AC & DC welding of mild steel, stainless steel, copper, aluminum, magnesium and their alloys. | | Grey | # 4.10 TIG Welding Parameters for Steel | | DC Cı | ırrent | | | | | |-------------------------|------------|--------------------|--------------------------------|-------------------------|------------------------|--------------| | Base Metal
Thickness | Mild Steel | Stainless
Steel | Electrode
Diameter | Filler Rod
Diameter | Argon Gas Flow
Rate | Joint / Type | | 0.040" | 35-45 | 20-30 | 0.040" | 1/16" | 10 CFH | Butt/Corner | | (1.0mm) | 40-50 | 25-35 | (1.0mm) | (1.6mm) | (5 LPM) | Lap/Filler | | 0.045" | 45-55 | 30-45 | 0.040" | 1/16" | 13 CFH | Butt/Corner | | (1.22mm) | 50-60 | 35-50 | (1.0mm) (1.6mm) | (6 LPM) | Lap/Filler | | | 1/16" | 60-70 | 40-60 | 1/16" | 1/16" | 15 CFH | Butt/Corner | | (1.6mm) | 70-90 | 50-70 | (1.6mm) | (1.6mm) | (7 LPM) | Lap/Filler | | 1/8" | 80-100 | 65-85 | 1/1C" /1 1Cmms) | 0/00" (0.4 22 22) | 15CFH | Butt/Corner | | (3.2mm) | 90-115 | 90-110 | 1/16" (1.16mm) 3/32" (2.4mm) | (7 LPM) | Lap/Filler | | | 3/16" | 115-135 | 100-125 | 2/20" (0.4mm) | 1/0" (2.0mm) | 21CFH | Butt/Corner | | (4.8mm) | 140-165 | 125-150 | 3/32" (2.4mm) 1/8" (3.2mm) | (10 LPM) | Lap/Filler | | | 1/4" | 160-175 | 135-160 | 4 (011 (0, 0,) | E/00 /4 0 ··· · · · · | 21CFH | Butt/Corner | | (6.4mm) | 170-200 | 160-180 | 1/8" (3.2mm) | 5/32" (4.0mm) | (10 LPM) | Lap/Filler | # 4.11 Arc Welding Practice The techniques used for arc welding are almost identical regardless of what types of metals are being joined. Naturally enough, different types of electrodes would be used for different metals as described in the preceding section. # 4.12 Welding Position The electrodes dealt with in this publication can be used in most positions, i.e. they are suitable for welding in flat, horizontal, vertical and overhead positions. Numerous applications call for welds to be made in positions intermediate between these. Some of the common types of welds are shown in Figures 4-2 through 4-9. Figure 4-3: Flat position, down hand butt weld Figure 4-4: Flat position, gravity fillet weld Figure 4-5: Horizontal position, butt weld Figure 4-6: Horizontal - Vertical (HV) position Figure 4-7: Vertical position, butt weld Figure 4-8: Vertical position, fillet weld Figure 4-9: Overhead position, butt weld Figure 4-10: Overhead position, fillet weld # 4.13 Joint Preparations In many cases, it will be possible to weld steel sections without any special preparation. For heavier sections and for repair work on castings, etc., it will be necessary to cut or grind an angle between the pieces being joined to ensure proper penetration of the weld metal and to produce sound joints. In general, surfaces being welded should be clean and free of rust, scale, dirt, grease, etc. Slag should be removed from oxy-cut surfaces. Typical joint designs are shown in Figure 4-10. Figure 4-11: Typical joint designs for arc welding ### 4.14 Arc Welding Technique ### **A Word to Beginners** For those who have not yet done any welding, the simplest way to commence is to run beads on a piece of scrap plate. Use mild steel plate about 1/4" (6.4mm) thick and a 1/8" (3.2mm) electrode.
Clean any paint, loose scale or grease off the plate and set it firmly on the work bench so that welding can be carried out in the downhand position. Make sure that the work clamp is making good electrical contact with the work, either directly or through the work table. For light gauge material, always clamp the work lead directly to the job, otherwise a poor circuit will probably result. ### 4.15 The Welder Place yourself in a comfortable position before beginning to weld. Get a seat of suitable height and do as much work as possible sitting down. Don't hold your body tense. A taut attitude of mind and a tensed body will soon make you feel tired. Relax and you will find that the job becomes much easier. You can add much to your peace of mind by wearing a leather apron and gauntlets. You won't be worrying then about being burnt or sparks setting alight to your clothes. Place the work so that the direction of welding is across, rather than to or from, your body. The electrode holder lead should be clear of any obstruction so that you can move your arm freely along as the electrode burns down. If the lead is slung over your shoulder, it allows greater freedom of movement and takes a lot of weight off your hand. Be sure the insulation on your cable and electrode holder is not faulty, otherwise you are risking an electric shock. # 4.16 Striking the Arc Practice this on a piece of scrap plate before going on to more exacting work. You may at first experience difficulty due to the tip of the electrode "sticking" to the work piece. This is caused by making too heavy a contact with the work and failing to withdraw the electrode quickly enough. A low amperage will accentuate it. This freezing-on of the tip may be overcome by scratching the electrode along the plate surface in the same way as a match is struck. As soon as the arc is established, maintain a 1/16" (1.6mm) to 1/8" (3.2mm) gap between the burning electrode end and the parent metal. Draw the electrode slowly along as it melts down. Another difficulty you may meet is the tendency, after the arc is struck, to withdraw the electrode so far that the arc is broken again. A little practice will soon remedy both of these faults. Figure 4-12: Striking an arc ## 4.17 Arc Length The securing of an arc length necessary to produce a neat weld soon becomes almost automatic. You will find that arc produces a crackling or spluttering noise and the weld metal comes across in large, irregular blobs. The weld bead is flattened and spatter increases. A short arc is essential if a high quality weld is to be obtained although if it is too short there is the danger of it being blanketed by slag and the electrode tip being solidified in. If this should happen, give the electrode a quick twist back over the weld to detach it. Contact or "touch-weld" electrodes such as E7014 electrode do not stick in this way, and make welding much easier. ### 4.18 Rate of Travel After the arc is struck, your next concern is to maintain it, and this requires moving the electrode tip towards the molten pool at the same rate as it is melting away. At the same time, the electrode has to move along the plate to form a bead. The electrode is directed at the weld pool at about 20° from the vertical. The rate of travel has to be adjusted so that a well-formed bead is produced. If the travel is too fast, the bead will be narrow and strung out and may even be broken up into individual globules. If the travel is too slow, the weld metal piles up and the bead will be too large. # 4.19 Making Welded Joints Having attained some skill in the handling of an electrode, you will be ready to go on to make up welded joints. ### A. Butt Welds Set up two plates with their edges parallel, as shown in Figure 4-12, allowing 1/16" (1.6mm) to 3/32" (2.4mm) gap between them and tack weld at both ends. This is to prevent contraction stresses from the cooling weld metal pulling the plates out of alignment. Plates thicker than 1/4" (6.4mm) should have their mating edges beveled to form a 70° to 90° included angle. This allows full penetration of the weld metal to the root. Using a 1/8" (3.2mm) E7014 electrode at 120 amps, deposit a run of weld metal on the bottom of the joint. Do not weave the electrode, but maintain a steady rate of travel along the joint sufficient to produce a well-formed bead. At first you may notice a tendency for undercut to form, but keeping the arc length short, the angle of the electrode at about 20° from vertical, and the rate of travel not too fast, will help eliminate this. The electrode needs to be moved along fast enough to prevent the slag pool from getting ahead of the arc. To complete the joint in thin plate, turn the job over, clean the slag out of the back and deposit a similar weld. Figure 4-13: Butt weld Figure 4-14: Weld build up sequence Heavy plate will require several runs to complete the joint. After completing the first run, chip the slag out and clean the weld with a wire brush. It is important to do this to prevent slag being trapped by the second run. Subsequent runs are then deposited using either a weave technique or single beads laid down in the sequence shown in Figure 4-13. The width of weave should not be more than three times the core wire diameter of the electrode. When the joint is completely filled, the back is either machined, ground or gouged out to remove slag which may be trapped in the root, and to prepare a suitable joint for depositing the backing run. If a backing bar is used, it is not usually necessary to remove this, since it serves a similar purpose to the backing run in securing proper fusion at the root of the weld. ### **B.** Fillet Welds These are welds of approximately triangular cross-section made by depositing metal in the corner of two faces meeting at right angles. Refer to Figure 4-5. A piece of angle iron is a suitable specimen with which to begin, or two lengths of strip steel may be tacked together at right angles. Using a 1/8" (3.2mm) E7014 electrode at 120 amps, position angle iron with one leg horizontal and the other vertical. This is known as a horizontal-vertical (HV) fillet. Strike the arc and immediately bring the electrode to a position perpendicular to the line of the fillet and about 45° from the vertical. Some electrodes require to be sloped about 20° away from the perpendicular position to prevent slag from running ahead of the weld. Refer to Figure 4-14. Do not attempt to build up much larger than 1/4" (6.4mm) width with a 1/8" (3.2mm) electrode, otherwise the weld metal tends to sag towards the base, and undercut forms on the vertical leg. Multi-runs can be made as shown in Figure 4-15. Weaving in HV fillet welds is undesirable. Figure 4-15: Electrode position for HV fillet weld Figure 4-16: Multi-runs in HV fillet weld #### C. Vertical Welds ### Vertical Up Tack weld a three feet length of angle iron to your work bench in an upright position. Use a 1/8" (3.2mm) E7014 electrode and set the current at 120 amps. Make yourself comfortable on a seat in front of the job and strike the arc in the corner of the fillet. The electrode needs to be about 10° from the horizontal to enable a good bead to be deposited. Refer Figure 4-16. Use a short arc, and do not attempt to weave on the first run. When the first run has been completed de-slag the weld deposit and begin the second run at the bottom. This time a slight weaving motion is necessary to cover the first run and obtain good fusion at the edges. At the completion of each side motion, pause for a moment to allow weld metal to build up at the edges, otherwise undercut will form and too much metal will accumulate in the centre of the weld. Figure 4-17 illustrates multi-run technique and Figure 4-18 shows the effects of pausing at the edge of weave and of weaving too rapidly. Figure 4-17: Single run vertical fillet weld Figure 4-18: Multi run vertical fillet weld Figure 4-19: Examples of vertical fillet welds #### 2. Vertical Down The E7014 electrode makes welding in this position particularly easy. Use a 1/8" (3.2mm) electrode at 120 amps. The tip of the electrode is held in light contact with the work and the speed of downward travel is regulated so that the tip of the electrode just keeps ahead of the slag. The electrode should point upwards at an angle of about 45°. Operation 4-10 Manual 0-5073 #### 3. Overhead Welds Apart from the rather awkward position necessary. overhead welding is not much more difficult that downhand welding. Set up a specimen for overhead welding by first tacking a length of angle iron at right angles to another piece of angle iron or a length of waste pipe. Then tack this to the work bench or hold in a vice so that the specimen is positioned in the overhead position as shown in the sketch. The electrode is held at 45° to the horizontal and tilted 10° in the line of travel (Figure 4-19). The tip of the electrode may be touched lightly on the metal, which helps to give a steady run. A weave technique is not advisable for overhead fillet welds. Use a 1/8" (3.2mm) E6012 electrode at 120 amps, and deposit the first run by simply drawing the electrode along at a steady rate. You will notice that the weld deposit is rather convex, due to the effect of gravity before the metal freezes. Figure 4-20: Overhead fillet weld ### 4.20 Distortion Distortion in some degree is present in all forms of welding. In many cases it is so small that it is barely perceptible, but in other cases allowance has to be made before welding commences for the distortion that will subsequently occur. The study of distortion is so complex that only a brief outline can be attempted hear. ### 4.21 The Cause of Distortion Distortion is cause by: #### A. Contraction of Weld Metal: Molten steel shrinks approximately 11 per cent in volume on cooling to room temperature. This means that a cube of molten metal would contract approximately 2.2 per cent in each of its three dimensions. In a welded joint,
the metal becomes attached to the side of the joint and cannot contract freely. Therefore, cooling causes the weld metal to flow plastically, that is, the weld itself has to stretch if it is to overcome the effect of shrinking volume and still be attached to the edge of the joint. If the restraint is very great, as, for example, in a heavy section of plate, the weld metal may crack. Even in cases where the weld metal does not crack, there will still remain stresses "locked-up" in the structure. If the joint material is relatively weak, for example, a butt joint in 5/64" (2.0mm) sheet, the contracting weld metal may cause the sheet to become distorted. # B. Expansion and Contraction of Parent Metal in the Fusion Zone: While welding is proceeding, a relatively small volume of the adjacent plate material is heated to a very high temperature and attempts to expand in all directions. It is able to do his freely at right angles to the surface of the plate (i.e., "through the weld"), but when it attempts to expand "across the weld" or "along the weld", it meets considerable resistance, and to fulfill the desire for continued expansion, it has to deform plastically, that is, the metal adjacent to the weld is at a high temperature and hence rather soft, and, by expanding, pushes against the cooler, harder metal further away, and tends to bulge (or is "upset"). When the weld area begins to cool, the "upset" metal attempts to contract as much as it expanded. but, because it has been "upset", it does not resume its former shape, and the contraction of the new shape exerts a strong pull on adjacent metal. Several things can then happen. The metal in the weld area is stretched (plastic deformation), the job may be pulled out of shape by the powerful contraction stresses (distortion), or the weld may crack, in any case, there will remain "locked-up" stresses in the job. Figures 4-20 and 4- 21 illustrate how distortion is created. Figure 4-21: Parent metal expansion Figure 4-22: Parent metal contraction ### 4.22 Overcoming Distortion Effects There are several methods of minimizing distortion effects. ### A. Peening This is done by hammering the weld while it is still hot. The weld metal is flattened slightly and because of this the tensile stresses are reduced a little. The effect of peening is relatively shallow, and is not advisable on the last layer. ### B. Distribution of Stresses Distortion may be reduced by selecting a welding sequence which will distribute the stresses suitably so that they tend to cancel each other out. See Figures 4-25 through 4-28 for various weld sequences. Choice of a suitable weld sequence is probably the most effective method of overcoming distortion, although an unsuitable sequence may exaggerate it. Simultaneous welding of both sides of a joint by two welders is often successful in eliminating distortion. #### C. Restraint of Parts Forcible restraint of the components being welded is often used to prevent distortion. Jigs, positions, and tack welds are methods employed with this in view. ### D. Presetting It is possible in some cases to tell from past experience or to find by trial and error (or less frequently, to calculate) how much distortion will take place in a given welded structure. By correct pre-setting of the components to be welded, constructional stresses can be made to pull the parts into correct alignment. A simple example is shown in Figure 4-22. ### E. Preheating Suitable preheating of parts of the structure other than the area to be welded can be sometimes used to reduce distortion. Figure 4-23 shows a simple application. By removing the heating source from b and c as soon as welding is completed, the sections b and c will contract at a similar rate, thus reducing distortion. Figure 4-23: Principle of presetting Dotted lines show effect if no preheat is used Figure 4-24: Reduction of distortion by preheating Figure 4-25: Examples of distortion OPERATION THERMAL ARC 161 S Figure 4-26: Welding sequence Figure 4-27: Step back sequence Figure 4-28: Chain intermittent welding Figure 4-29: Staggered intermittent welding Manual 0-5073 4-13 Operation This Page Intentionally Blank. # SECTION 5: SERVICE ### 5.01 Maintenance and Inspection The only routine maintenance required for the power supply is a thorough cleaning and inspection, with the frequency depending on the usage and the operating environment. ### CAUTION Do not blow air into the power supply during cleaning. Blowing air into the unit can cause metal particles to interfere with sensitive electrical components and cause damage to the unit. #### WARNING There are extremely dangerous voltages and power levels present inside this product. Disconnect primary power at the source before opening the enclosure. Wait at least two minutes before opening the enclosure to allow the primary capacitors to discharge. # Warning! Disconnect input power before maintaining. Maintain more often if used under severe conditions ### **Each Use** Visual check of regulator and pressure Visual check of torch Consumable parts ### Weekly Visually inspect the torch body and consumables Visually inspect the cables and leads. Replace as needed ### **3 Months** Clean exterior of power supply #### **6 Months** Bring the unit to an authorized Thermal Arc Service Center to remove any accumulated dirt and dust from the interior. This may need to be done more frequently under exceptionally dirty conditions. THERMAL ARC 161 S SERVICE # 5.02 STICK (SMAW) Welding Problems | Description | | Possible Cause | | Remedy | |---|----|--|----|---| | Gas pockets or voids in weld metal | A. | Electrodes are damp. | Α. | Dry electrodes before use. | | (Porosity). | | Welding current is too high. | В. | Reduce welding current. | | | C. | Surface impurities such as oil, grease, paint, etc. | C. | Clean joint before welding | | Crack occurring in weld metal soon after solidification commences. | | Rigidity of joint. | A. | Redesign to relieve weld joint of severe stresses or use crack resistance electrodes. | | | В. | Insufficient throat thickness. | B. | Travel slightly slower to allow greater build up in throat. | | | C. | Cooling rate is too high. | C. | Preheat plate and cool slowly. | | 3. A gap is left by failure of the weld | A. | Welding current is too low. | A. | Increase welding current | | metal to fill the root of the weld. | В. | Electrode too large for joint. | В. | Use smaller diameter electrode. | | | C. | Insufficient gap. | C. | Allow wider gap. | | Incorrect Sequence | D. | Incorrect sequence. | D. | Use correct build-up sequence. | | Insufficient Gap | | | | | | 4. Portions of the weld run do not fuse to the surface of the metal or edge | A. | Small electrodes used on heavy cold plate. | Α. | Use larger electrodes and preheat the plate. | | of the joint | В. | Welding current is too low. | В. | Increase welding current | | Lack of fusion caused by dirt,
electrode angle incorrect,
rate of travel too high | C. | Wrong electrode angle. | C. | Adjust angle so the welding arc is directed more into the base metal | | Art # A-05867_AC Lack of | D. | Travel speed of electrode is too | D. | Reduce travel speed of electrode | | Lack of side fusion, | | high. | E. | Clean surface before welding. | | scale dirt, small electrode,
amperage too low Lack of root fusion | E. | Scale or dirt on joint surface. | | | | 5. Non-metallic particles are trapped in the weld metal (slag inclusion). | A. | Non-metallic particles may be trapped in undercut from previous run. | A. | If bad undercut is present, clean slag
out and cover with a run from a smaller
diameter electrode. | | | В. | Joint preparation too restricted. | B. | Allow for adequate penetration and room for cleaning out the slag. | | Slag
trapped in
undercut | C. | Irregular deposits allow slag to be trapped. | C. | If very bad, chip or grind out irregularities. | | Not cleaned, or incorrect electrode | D. | Lack of penetration with slag trapped beneath weld bead. | D. | Use smaller electrode with sufficient current to give adequate penetration. Use suitable tools to remove all slag from corners. | | Art # A-05868_AB | E. | Rust or mill scale is preventing full fusion. | E. | Clean joint before welding. | | Slag trapped in root | F. | Wrong electrode for position in which welding is done. | F. | Use electrodes designed for position in which welding is done, otherwise proper control of slag is difficult. | # 5.03 TIG Welding Problems Weld quality is dependent on the selection of the correct consumables, maintenance of equipment and proper welding technique. | | Description | | Possible Cause | | Remedy | |-----|---|----------|---|----------|---| | 1. | Excessive bead build-up or poor penetration or poor fusion at edges of weld. | | Welding current is too low | | Increase weld current and/or change joint preparation. | | 2. | Weld bead too wide and flat or
undercut at edges of weld or
excessive burn through. | | Welding current is too high. | | Decrease welding current. | | 3. | Weld bead too small or insufficient penetration or ripples in bead are widely spaced apart. | | Travel speed too fast. | | Reduce travel speed. | | 4. | Weld bead too wide or excessive
bead build up or excessive penetration in butt joint. | | Travel speed is too slow. | | Increase travel speed. | | 5. | Uneven leg length in fillet joint. | | Wrong placement of filler rod. | | Re-position filler rod. | | 6. | Electrode melts when arc is struck. | | Electrode is connected to the "+" Positive Output Terminal. | | Connect the electrode to the "-" Negative Output Terminal. | | 7. | Dirty weld pool. | | Electrode contaminated through contact with work piece or filler rod material. | | Clean the electrode by grinding contaminates off. | | | | В. | Gas contaminated with air. | В. | Check gas lines for cuts and loose fitting or change gas cylinder. | | 8. | Poor weld finish. | | Inadequate shielding gas. | | Increase gas flow or check gas line for problems | | 9. | Arc flutters during TIG welding. | | Tungsten electrode is too large for the welding current. | | Select the right size electrode.
Refer to section Tungsten Electrode
Current Ranges. | | | Welding arc cannot be established. | | the work piece or the work/torch leads are not connected to the correct welding terminals. Torch lead is disconnected. Gas flow incorrectly set, cylinder empty or the torch valve is off. | | work piece or connect the work/ torch leads to the correct welding terminals. Connect it to the "-" Negative Output Terminal. Select the right flow rate, change cylinder or turn torch valve on. | | 11. | Electrode melts or oxidizes when an arc is struck. | C. | No gas is flowing to welding region. Torch is clogged with dust. Gas hose is cut. Gas passage contains impurities. Gas regulator turned off. | C.
D. | Check the gas lines for kinks or breaks or cylinder contains gas. Clean torch. Replace gas hose. Disconnect gas hose from torch then raise gas pressure and blow out impurities. Turn on. | | | | F.
G. | Torch valve is turned off. The electrode is too small for the welding current. | F.
G. | Turn on. Increase electrode diameter or reduce the welding current. | THERMAL ARC 161 S SERVICE # **TIG Welding Problems (Continued)** | Description | Possible Cause | Remedy | | | |------------------------------|---|--|--|--| | 12. Arc start is not smooth. | A. Tungsten electrode is too large for the welding current. | A. Refer to section Tungsten Electrode Current Ranges for the correct size. | | | | | B. The wrong electrode is being used for the welding job. | B. Refer to section Tungsten Electrode Types for the correct electrode type. | | | | | C. Gas flow rate is too high. | C. Select the correct flow rate for the welding job. | | | | | D. Incorrect shield gas is being used. | D. Use 100% argon for TIG welding. | | | | | E. Poor work clamp connection to work piece. | E. Improve connection to work piece. | | | ### WARNING There are extremely dangerous voltages and power levels present inside this product. Do not attempt to repair unless you are an Accredited Thermal Arc Service Agent and you have had training in power measurements and troubleshooting techniques. If major complex subassemblies are faulty, then the Welding Power Source must be returned to an Accredited Thermal Arc Service Agent for repair. ### 5.04 Power Source Problems | | Description | Possible Cause | Remedy | |----|---|--|--| | 1. | The welding arc cannot be established. | A. The Primary supply voltage has not been switched ON. B. The Welding Power Source switch is switched OFF. C. Loose connections internally. | A. Switch ON the Primary supply voltage. B. Switch ON the Welding Power Source. C. Have an Accredited Thermal Arc Service Provider repair the connection. | | 2. | The welding arc cannot be established when the Warning Indicator lights up continuously | The machines duty cycle has been exceeded | Wait for the Warning Indicator to extinguish before resuming welding | | 3. | Maximum output welding current cannot be achieved with nominal Mains supply voltage. | Defective control circuit | Have an Accredited Thermal Arc
Service Provider inspect then
repair the welder. | | 4. | Welding current reduces when welding. | Poor work lead connection to the work piece. | Ensure that the work lead has a positive electrical connection to the work piece. | | 5. | during welding. | The circuit breaker (or fuse) is under size. | The recommended circuit breaker (or fuse) size is 30 amp. An individual branch circuit capable of carrying 30 amperes and protected by fuses or circuit breaker is recommended for this application. | | 6. | The welding arc cannot be established when Fault Indicator is flashing. | The input current to the main transformer has been exceeded. | Have an Accredited Thermal Arc
Service Provider inspect then
repair the welder. | # **APPENDIX 1: OPTIONS AND ACCESSORIES** | Description | Part Number | |--|-------------| | 17V style TIG Torch with 12.5ft lead, gas valve, 50mm dinse connection and accessory kit | W4012600 | | VICTOR AF210-580 Regulator, Argon-CO2 Flowgauge with 5/8" - 18 UNF connection | 0781-4169 | | Power Adapter-230V,50A Socket (Nema 6-50R) to 115V, 15A Plug (Nema 5-15P) | W4014000 | | USA Graphics Auto-Darkening welding helmet, spare cover lens and operating manual | W4011700 | | Canadian Graphics Auto-Darkening welding helmet, spare cover lens and operating manual | W4011800 | | Claret Color Auto-Darkening welding helmet, spare cover lens and operating manual | W4011900 | | Black Graphics Auto-Darkening welding helmet, spare cover lens and operating manual | W4012000 | THERMAL ARC 161 S APPENDIX # **APPENDIX 2: REPLACEMENT PARTS** | Item No | Description | Part No. | Reference Designator | |---------|--------------------------------|----------|----------------------| | 1 | Handle | W7003040 | | | 2 | Panel,Cover, | W7003051 | | | 3 | Resistor,4 ohm,60W | W7003055 | R1 | | 4 | Rectifier | W7003010 | | | 5 | Thermistor | W7003016 | THC1, THC2 | | 6 | Control PCB | W7003057 | PCB2 | | 7 | Main Power PCB | W7003061 | PCB1 | | 8 | Front Control PCB3 | W7003047 | PCB3 | | 9 | Inductor | W7003089 | | | 10 | Clear Cover Sheet | W7003060 | | | 11 | Front Panel | W7003022 | | | 12 | Front Panel Label | W7003062 | | | 13 | Knob, control, red, 20 ODx6 ID | W7003079 | | | 14 | Rubber Boot | W7003064 | | | 15 | Output Terminal, 50mm dinse | W7003020 | | | 16 | Base Panel | W7003073 | | | 17 | Fan,24V DC | W7003090 | | | 18 | Rear Panel | W7003054 | | | 19 | ON/OFF Switch | W7003053 | SW1 | | 20 | Capacitor,10uF,300VAC | W7003094 | C1 | | 21 | Current Sensor,161-201TS | W7003076 | Current Sensor | ### WARNING There are extremely dangerous voltages and power levels present inside this product. Do not attempt to repair unless you are an Accredited Thermal Arc Service Agent and you have had training in power measurements and troubleshooting techniques. If major complex subassemblies are faulty, then the Welding Power Source must be returned to an Accredited Thermal Arc Service Agent for repair. # **APPENDIX 3: SYSTEM SCHEMATIC** ## LIMITED WARRANTY This information applies to Thermal Arc products that were purchased in the USA and Canada. ### January 2009 LIMITED WARRANTY: Thermal Arc®, Inc., A Thermadyne Company ("Thermal Arc"), warrants to customers of authorized distributors ("Purchaser") that its products will be free of defects in workmanship or material. Should any failure to conform to this warranty appear within the warranty period stated below, Thermal Arc shall, upon notification thereof and substantiation that the product has been stored, installed, operated, and maintained in accordance with Thermal Arc's specifications, instructions, recommendations and recognized standard industry practice, and not subject to misuse, repair, neglect, alteration, or damage, correct such defects by suitable repair or replacement, at Thermal Arc's sole option, of any components or parts of the product determined by Thermal Arc to be defective. # This warranty is exclusive and in lieu of any warranty of merchantability, fitness for any particular purpose, or other warranty of quality, whether express, implied, or statutory. Limitation of liability: Thermal Arc shall not under any circumstances be liable for special, indirect, incidental, or consequential damages, including but not limited to lost profits and business interruption. The remedies of the purchaser set forth herein are exclusive, and the liability of Thermal Arc with respect to any contract, or anything done in connection therewith such as the performance or breach thereof, or from the manufacture, sale, delivery, resale, or use of any goods covered by or furnished by Thermal Arc, whether arising out of contract, tort, including negligence or strict liability, or under any warranty, or otherwise, shall not exceed the price of the goods upon which such liability is based. No employee, agent, or representative of Thermal Arc is authorized to change this warranty in any way or grant any other warranty, and Thermal Arc shall not be bound by any such attempt. Correction of non-conformities, in the manner and time provided herein, constitutes fulfillment of thermal's obligations to purchaser with respect to the product. This warranty is void, and seller bears no liability hereunder, if purchaser used replacement parts or accessories
which, in Thermal Arc's sole judgment, impaired the safety or performance of any Thermal Arc product. Purchaser's rights under this warranty are void if the product is sold to purchaser by unauthorized persons. The warranty is effective for the time stated below beginning on the date that the authorized distributor delivers the products to the Purchaser. Notwithstanding the foregoing, in no event shall the warranty period extend more than the time stated plus one year from the date Thermal Arc delivered the product to the authorized distributor. Warranty repairs or replacement claims under this limited warranty must be submitted to Thermal Arc via an authorized Thermal Arc repair facility within thirty (30) days of purchaser's discovery of any defect. Thermal Arc shall pay no transportation costs of any kind under this warranty. Transportation charges to send products to an authorized warranty repair facility shall be the responsibility of the Purchaser. All returned goods shall be at the Purchaser's risk and expense. This warranty dated January 1st 2009 supersedes all previous Thermal Arc warranties. Thermal Arc® is a Registered Trademark of Thermal Arc, Inc. # **WARRANTY SCHEDULE** This information applies to Thermal Arc products that were purchased in the USA and Canada. # January 2009 | SAFETY EQUIPMENT | WARRANTY PERIOD | <u>Labor</u> | |---|--|----------------------| | Auto-Darkening Welding Helmet (Electronic Lens) Harness Assembly | 2 year
1 Month | 2 year
1 Month | | ENGINE DRIVEN WELDERS | WARRANTY PERIOD | <u>Labor</u> | | Scout, Raider, Explorer | | | | Original Main Power Stators and Inductors | 3 years | 3 years | | Original Main Power Rectifiers, Control P.C. Boards | 3 years | 3 years | | All other original circuits and components including, but not limited to, relays, switches, | | • | | contactors, solenoids, fans, power switch semi-conductors | 1 year | 1 year | | Engines and associated components are NOT warranted by Thermal Arc, although most are | • | | | warranted by the engine manufacturer | See the Engine Manufa | ctures' Warranty for | | | Deta | ils | | GMAW/FCAW (MIG) WELDING EQUIPMENT | WARRANTY PERIOD | <u>Labor</u> | | Fabricator 140; 180; 190, 210, 251, 281; Fabstar 4030; | | | | PowerMaster 350, 350P, 500, 500P; 320SP; 400SP; 500SP; Excelarc 6045. | | | | Wire Feeders; Ultrafeed, Portafeed Original Main Power Transformer and Inductor | 5 years | 3 years | | Original Main Power Hanslottler and Inductor Original Main Power Rectifiers, Control P.C. Boards, power switch semi-conductors | • | 3 years | | All other original circuits and components including, but not limited to, relays, switches, | o years | o years | | contactors, solenoids, fans, electric motors. | 1 year | 1 year | | TIG (GTAW) & MULTI-PROCESS INVERTER WELDING EQUIPMENT | WARRANTY PERIOD | LABOR | | 160TS, 300TS, 400TS, 185AC/DC, 200AC/DC, 300AC/DC, 400MST, 300MST, 400MSTP | - I Community of C | <u> ENDON</u> | | Original Main Power Magnetics | 5 years | 3 years | | Original Main Power Rectifiers, Control P.C. Boards, power switch semi-conductors | 3 years | 3 years | | All other original circuits and components including, but not limited to, relays, switches, | | | | contactors, solenoids, fans, electric motors | 1 year | 1 year | | <u>Plasma welding equipment</u> | WARRANTY PERIOD | <u>Labor</u> | | Ultima 150 | | | | Original Main Power Magnetics | • | 3 years | | Original Main Power Rectifiers, Control P.C. Boards, power switch semi-conductors | - | 3 years | | Welding Console, Weld Controller, Weld Timer | 3 years | 3 years | | All other original circuits and components including, but not limited to, relays, switches, | 4 | 4 | | contactors, solenoids, fans, electric motors, Coolant Recirculator. | | 1 year | | STICK (SMAW) WELDING EQUIPMENT Thermal Arc 95S | WARRANTY PERIOD | <u>Labor</u> | | Original Main Power Magnetics | 1 year | 1 year | | Original Main Power Nagricus | - | 1 year | | All other original circuits and components including, but not limited to, relays, switches, | i yeai | i yeai | | contactors, solenoids, fans, | 1 vear | 1 year | | 161S, 161STL, 201TS | | . , | | Original Main Power Magnetics | 3 years | 3 years | | Original Main Power Rectifiers, Control P.C. Boards | 3 years | 3 years | | All other original circuits and components including, but not limited to, relays, switches, | 1 year | 1 year | | contactors, solenoids, fans 160S, 300S, 400S | | | | Original Main Power Magnetics | 5 years | 3 years | | Original Main Power Rectifiers, Control P.C. Boards | | 3 years | | All other original circuits and components including, but not limited to, relays, switches, | | o you.o | | contactors, solenoids, fans, power switch semi-conductors | 1 year | 1 year | | GENERAL ARC EQUIPMENT | WARRANTY PERIOD | LABOR | | Water Recirculators | | 1 year | | Plasma Welding Torches | | 180 days | | Gas Regulators (Supplied with power sources) | • | Nil | | MIG and TIG Torches (Supplied with power sources) | | Nil | | Replacement repair parts | - | Nil | | MIG, TIG and Plasma welding torch consumable items | | Nil | U.S. Customer Care: 800-426-1888 / FAX 800-535-0557 • Canada Customer Care: 905-827-4515 / FAX 800-588-1714 International Customer Care: 940-381-1212 / FAX 940-483-8178 • www.thermalarc.com THERMADYNE. WORLD HEADQUA A Global Cutting & Welding Market Leader™ WORLD HEADQUARTERS: 16052 Swingley Ridge Road, Suite 300 • St. Louis, Missouri 63017 U.S.A. THE AMERICAS Denton, TX USA U.S. Customer Care Pin: 1-800-426-1888 (tolffree) Fax: 1-800-535-0557 (tolffree) International Customer Care Pin: 1-940-381-1212 Fax: 1-940-483-8178 Miami, FL USA Sales Office, Latin America Ph: 1-954-727-8371 Fax: 1-954-727-8376 Oakville, Ontario, Canada Canada Customer Care Ph: 1-905-827-4515 Fax: 1-800-588-1714 (tollfree) EUROPE Chorley, United Kingdom Customer Care Ph: +44 1257-261755 Fax: +44 1257-224800 Milan, Italy Customer Care Ph: +39 0236546801 Fax: +39 0236546840 ASIA/PACIFIC Cikarang, Indonesia Customer Care Ph: 6221-8990-6095 Fax: 6221-8990-6096 Rawang, Malaysia Customer Care Ph: +603 6092-2988 Fax: +603 6092-1085 Melbourne, Australia Australia Customer Care Ph: 1300-654-674 (tollfree) Ph: 61-3-9474-2988 Fax: 61-3-9474-7391 International Ph: 61-3-9474-7508 Fax: 61-3-9474-7488 **Shanghai, China Sales Office**Ph: +86 21-64072626 Fax: +86 21-64483032 **Singapore** **Singapore Sales Office**Ph: +65 6832-8066 Fax: +65 6763-5812